日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸:
綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。
英國氣候過渡計畫工作小組(Transition Plan Taskforce, TPT)在2022年11月8日公布其氣候揭露報告框架草案(Disclosure Reporting Framework)、實施指南,以及技術性附錄,用以輔導英國企業擬定氣候過渡計畫,並在技術性附錄中提供與氣候揭露相關的指標與準則等詳細資訊,供企業參考。 氣候過渡計畫是英國淨零政策相當重要的一環。英國財政部長於2021年COP26大會上宣布成立工作小組,研擬氣候過渡計畫的規範,要求英國企業公布清晰且可交付的計畫,英國財政部在2022年4月宣布TPT成立,負責建立一套英國適用、並且可與其它國際準則進行轉換的氣候過渡計畫準則。TPT根據氣候相關財務揭露工作小組(Task Force on Climate-related Financial Disclosures, TFCD)、國際永續準則理事會(International Sustainability Standards Board, ISSB)、及格拉斯哥淨零金融聯盟(the Glasgow Financial Alliance for Net Zero, GFANZ)等現有成果,另增若干細節,在2022年11月提出此一框架草案及指南等文件。 TPT框架建議企業以企圖心、行動力和當責性為原則,分階段設定過渡計畫目標。而企業的氣候揭露應包括五大項目:基礎事項(如企業目標)、執行策略(如企業營運)、擴大參與策略(如與價值鏈的連結)、使用的指標與目標(如財務指標)以及治理(如董事會的監督與報告),這些在實施指南中都有詳細的說明。 TPT框架自公布起即公開徵求各界意見至2023年2月28日,並廣邀各界就其內容進行測試,提供意見反饋,這些都將供作TPT修訂框架之參考,預計2023年完成草案的最終版本。TPT的文件雖不具法律效力,但是其內容將成為英國金融行為管理局(Financial Conduct Authority, FCA)未來修訂上市公司及金融機構相關氣候過渡計畫揭露規則時的依據,其後續發展值得關注。
下一個要控告的是…其它所有公司?Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。 美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」 此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。
可專利性(Patentability)與專利適格(Patent-Eligibility)有何不同?可專利性(Patentability)與專利適格(Patent-Eligibility)常被混用,但實際上兩者並不可以畫上等號。 具專利適格不等於可專利一事,在指標判例In re Bilski可窺知端倪:「新穎性(Novelty)、進步性(Non-obviousness,或稱非顯而易見性)的分析,和35 U.S.C. §101(專利適格的法源)無關,而是分別以35 U.S.C. §102、35 U.S.C. §103作為法源。」顯示專利適格、實用性(Utility,或稱「產業利用性」)、新穎性、進步性,互不隸屬。梳理美國專利法教課書(Casebook)和判決內容,可知:「專利適格」是取得專利的基礎門檻、資格,具專利適格,並不必然可專利,還須符合實用性、新穎性、可進步性,才是一個「可專利」的發明。另應強調,「專利適格」除了需要滿足§101法條文字外,還需要滿足美國專利與商標局(USPTO)的兩階段標準(Two-Step Test)審查。 綜上,可整理出這個公式: 可專利性=專利適格(§101+兩階段標準)+實用性(§101)+新穎性(§102)+進步性(§103) 觀察美國專利法教科書的編排方式,亦可了解思考脈絡:先介紹專利適格,再依序介紹實用性、新穎性、進步性。另,「實用性」在作為名詞時是採“Utility”一字,而非“Usefulness”,這兩個詞微妙的差異是前者具「有價值的(Beneficial)」之意涵,也呼應Justice Story在 Bedford v. Hunt對「實用」(Useful)經常被援引的解釋:「要能在社會中做出有價值的(Beneficial)應用,不可以是對道德、健康、社會秩序有害(Injurious)的發明,也不可以是瑣碎(Frivolous)或不重要的(Insignificant)。」
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。