2019年6月28日於日本大阪舉行的G20高峰會上,大阪框架(大阪トラック、Osaka Track)再次躍上國際檯面,日本首相安倍晉三在G20高峰會的數位經濟議程當中,倡議建立大阪框架作為資料跨境流通之標準。安倍強調數位化對促進各國經濟發展與創新意義重大,而在數位時代下資料作為重要的成長動力來源,為了能最大化資料運用的可能性與發展潛力,建立一套國際通用的資料流通機制顯然已勢在必行。
「大阪框架」概念的首次提出,源自2019年1月23日安倍首相於瑞士達沃斯所舉辦的世界經濟論壇(World Economic Forum)中所發表的演講,強調資料將是21世紀經濟發展的關鍵資源,透過建立一套國際通用的資料自由流通機制,將有助於確保在數位時代下各種新興科技的創新與發展,不會受到各國管制措施及資料在地化(data localization)政策所阻礙。
「大阪框架」的核心為建立「可資信任的資料自由流通機制」(Data Free Flow with Trust,簡稱DFFT),透過建構國際所共同信任的資料跨境流通機制,將有助於推動包含電子商務在內等各式資料之流通與利用,進而促進數位創新;安倍宣示2019年大阪G20高峰會為大阪框架的起始點,並強調基於此前提出之WTO電子商務共同聲明,期許能透過WTO各會員國的合作,實現建立國際通用的資料跨境流通機制之目標。
本文為「經濟部產業技術司科技專案成果」
英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。
G7發布金融機關因應勒索軟體危脅之基礎要點由於近年來勒索軟體對國際金融帶來重大影響,七大工業國組織G7成立網路專家小組CEG(Cyber Expert Group),並於2022年10月13日訂定了「金融機關因應勒索軟體危脅之基礎要點」(Fundamental Elements of Ransomware Resilience for the Financial Sector),本份要點是為因應勒索軟體所帶來之危脅,提供金融機關高標準之因應對策,並期望結合G7全體成員國已施行之政策辦法、業界指南以及最佳之實踐成果,建立處置應變之基礎,加強國際金融的韌性。該份要點內容著重於民營之金融機關(private sector financial entities),或關鍵之第三方提供商(critical third party providers),因其本身有遵守反洗錢和反恐怖主義之融資義務,但也可依要點訂定之原意,在減少自身受到勒索軟體之損害上,或在處置與應變上有更多的彈性。而日本金融廳於2022年10月21日公布該份要點之官方翻譯版本,要點所提列之重點如下: 1.網路安全策略與框架(Cybersecurity Strategy and Framework): 將因應勒索軟體威脅之措施,列入金融機關整體的網路安全策略與框架之中。 2.治理(Governance): 支付贖金本身可能於法不容許,也可能違背國家政策或業界基準,金融機關須在事件發生前,檢視相關法規,並針對潛在的被制裁風險進行評估。 3.風險及控制評估(Risk and Control Assessment): 針對勒索軟體之風險,應建立控制評估機制並實踐之。因此可要求金融機關簽訂保險契約,填補勒索軟體造成的損害。 4.監控(Monitoring): 針對潛在的勒索軟體,金融機關有監控其活動進而發現隱藏風險之義務,並向執法與資通安全機關提供該惡意行為之相關資訊。 5.因應處置、回覆(Response): 遭遇勒索軟體攻擊之事件,就其處置措施,須依原訂定之計劃落實。 6.復原(Recovery): 遭遇勒索軟體攻擊之事件,將受損之機能復原,須有明確的程序並加以落實。 7.資訊共享(Information Sharing): 須與組織內外之利害關係人共享勒索軟體之事件內容、資訊以及知識。 8.持續精進(Continuous Learning): 藉由過往之攻擊事件獲取知識,以提高應變勒索軟體之能力,建立完善的交易環境。 此要點並非強制規範,因此不具拘束力,且整合了2016年G7所公布的「G7網路安全文件之要素」(G7 Fundamental Elements of Cybersecurity document)之內容。綜上述CEG所提列重點,針對我國金融機關在抵禦網路攻擊之議題上,應如何完善資安體制,與日本後續因應勒索軟體之政策,皆值得作為借鏡與觀察。
日本Spam對策研究會即將公布最終報告 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」