大阪框架(Osaka Track)

  2019年6月28日於日本大阪舉行的G20高峰會上,大阪框架(大阪トラック、Osaka Track)再次躍上國際檯面,日本首相安倍晉三在G20高峰會的數位經濟議程當中,倡議建立大阪框架作為資料跨境流通之標準。安倍強調數位化對促進各國經濟發展與創新意義重大,而在數位時代下資料作為重要的成長動力來源,為了能最大化資料運用的可能性與發展潛力,建立一套國際通用的資料流通機制顯然已勢在必行。

  「大阪框架」概念的首次提出,源自2019年1月23日安倍首相於瑞士達沃斯所舉辦的世界經濟論壇(World Economic Forum)中所發表的演講,強調資料將是21世紀經濟發展的關鍵資源,透過建立一套國際通用的資料自由流通機制,將有助於確保在數位時代下各種新興科技的創新與發展,不會受到各國管制措施及資料在地化(data localization)政策所阻礙。

  「大阪框架」的核心為建立「可資信任的資料自由流通機制」(Data Free Flow with Trust,簡稱DFFT),透過建構國際所共同信任的資料跨境流通機制,將有助於推動包含電子商務在內等各式資料之流通與利用,進而促進數位創新;安倍宣示2019年大阪G20高峰會為大阪框架的起始點,並強調基於此前提出之WTO電子商務共同聲明,期許能透過WTO各會員國的合作,實現建立國際通用的資料跨境流通機制之目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 大阪框架(Osaka Track), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8290&no=64&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
歐洲理事會( European Council ) 通過「菸草製品指令」修正案(Revision of the Tobacco Products Directive)

  歐洲理事會( European Council ) 於今年度(2014)3月14日通過「菸草製品指令」修正案(Revision of the Tobacco Products Directive),並預計於5月公布生效。指令生效後,歐盟各會員國應於指令公告歐盟官方公報後兩年內,將本指令內容納入其內國法體系中。   該項指令為降低菸草製品對未成年人吸引力,針對菸草製品包裝及成分管制達成共識,並將電子菸納入本次修法規範,指令主要規範內容如下: (一)警示文字和圖示應同時呈現 嚴格規範菸草產品需標示有礙健康的訊息和警語,並以圖示與文字呈現。除涵蓋外包裝正面與背面的65%外,側邊應標記妨害健康之警示。例如:「尼古丁會上癮,可能有害健康」或,「受損肺部圖片」。 (二)菸草產品成分與添加物之管制 菸草產品的外部包裝與內容物部份,需讓消費者清楚瞭解,購買的菸草產品有危害健康之疑慮。例如:不得將菸草產品以糖果、或香水化妝品等樣式包裝之;並嚴禁添加水果口味,薄荷或香草等添加物抑制菸草刺激氣味。 (三)全面禁止電子菸品廣告之播放 本次修正案更規定歐盟各會員國將於2016年起禁止撥放任何有關電子菸品銷售或販賣之廣告。   日前,我國衛福部食品藥物管理署公布市售電子煙檢驗報告,其中市售電子菸尼古丁檢出率達86%。我國有關單位除應提高我國菸品查緝管制強度外,實可借鏡歐盟新近管理作法,強化我國電子菸、菸品標示與相關管制規範。

因應國際法規變動趨勢的營業秘密管理建議

因應國際法規變動趨勢的營業秘密管理建議 資訊工業策進會科技法律研究所 2024年06月24日 因應技術進步導致資訊的存取與分享更加容易,營業秘密侵權爭議也隨之增長,綜觀國際政策推動或許多跨國智財專家均逐漸重視營業秘密爭議相關議題,並論及營業秘密相關法規趨勢、訴訟經驗、建議企業可執行的營業秘密管理做法等,以下將綜整相關趨勢與專家觀點並提出我國企業建議。 壹、法規變動趨勢 從國際趨勢以觀,各國針對「競業禁止」規定,有逐漸對其嚴格審查與進行法規監管的趨勢,而這也使得透過限制性條款避免機密資訊外洩的難度提高,企業多轉而透過營業秘密管理來加強防護。 一、競業禁止 本文列舉了近期美國與英國對於競業禁止法規監管的趨勢。 (一)美國將從聯邦層級禁止「競業禁止」條款 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於今年,2024年4月23日推出一項最終規定「Non-Compete Clause Rule[1]」,該規則將針對除了高級管理人員以外之員工,使僱主與員工之間已簽訂競業禁止協議無效,並禁止未來僱主與員工簽訂競業禁止合約。 (二)英國擬立法限制「競業禁止」之最高法定期限 英國目前的競業禁止相關限制係基於英美法,以法院的個案判決及既判例來執行。英國政府於2020年12月4日至2021年2月26日期間向公眾進行諮詢,並就諮詢意見之政府回覆於2023年發布報告[2],英國政府在該報告中提出,就目前國際實務上競業禁止條款之執行期間除了美國部分州已直接被禁止外,多半未進行太多限制,如德國最高為24個月、義大利最長可達三至五年,而英國政府提出其擬將在議會時間允許的情況下提出立法領先引入「最多三個月[3]」之上限,對於競業禁止條款進行限制。 二、合理保密措施 承上所述,基於「競業禁止」條款的效力可能因為政策、法規變動或在不同國家的規定不同而導致已簽署之競業禁止條款失去效力、尚未簽署之契約禁止再簽署競業禁止條款或只允許在受有限制之情況下簽署等,企業透過此類限制性條款來避免機密資訊外洩的難度提高,使的企業多轉而透過其他日常營業秘密管理措施來加強防護,及證明企業有落實營業秘密的「合理保密措施」之法律要件。 以美國加州為例,該州多年前就禁止「競業禁止」約定,故當地企業早已轉往透過建置營業秘密政策和保護措施來加強防護。 貳、具體營業秘密管理措施之建議 一、合理保密措施之目的 合理保密措施除了作為補足無法使用限制性條款(競業禁止條款)之替代管制措施具有「預防營業秘密洩漏之效果」以外;更具有在營業秘密侵權發生後,訴訟上舉證之用。許多智財實務專家表示,無論是在哪一國法規的管轄下,權利人共通性的困難多在於訴訟的舉證上,因此專家建議企業應留存營業秘密管制措施之執行紀錄以作為將來涉訟時舉證之用。 二、營業秘密管理之具體作法 參照實務上專家的建議,本文彙整將實務上被推薦之具體營業秘密管理做法[4]羅列如下: (一)確立並可以識別營業秘密範圍 對於企業而言,首先應識別並記錄出營業秘密(機密)範圍,才能明確管制措施的範圍,並透過機密的標示(例如浮水印)來使員工能夠認知到接觸的資訊為公司重要的營業秘密。 (二)監控 針對下載、複印、數據傳輸行為或者其他可能包含機密資訊之公司設備等行為公司應進行監控。 (三)使用行為管制 公司應限縮傳播範圍(包含禁止員工通過電子郵件將資訊發送到個人電子郵件或將機密文件攜出公司等);並於不使用時妥善存放保管並上鎖或設置密碼管控。 (四)人員管制 員工作為營業秘密管控機制重要的一環,專家建議應對員工進行教育訓練(告知營業秘密重要性或提供有關如何識別和保護機密資訊的培訓);與相關人員(員工、承包商、合作單位)簽署保密契約(confidentiality agreements)明確定義機密資訊之範圍以及禁止未經授權的使用與揭露;設立離職員工管控機制(包含離職面談、保存相關設備、甚至如果員工可能進入競爭對手工作,企業可評估是否進一步請合格第三方進行鑑識或取證員工身上是否攜帶機密資訊等,以作為未來若涉訟之舉證)等。 參、評析 綜上所述,企業或許已經理解建立合理保密措施並留存作為訴訟時舉證之證據的重要性,並了解些許零散的管理做法,但可能產生管理措施如何才算是完善的疑問,為了提供企業更全面的管理建議,資策會科法所創意智財中心以其在智財領域之研究與實務經驗的積累發布「營業秘密保護管理規範」[5](下稱管理規範)將管理措施透過十個單元建立PDCA管理循環。 經查,上述國際法規變動下實務專家討論之營業秘密管理措施均包含在管理規範內,如「(一)確立並可以識別營業秘密範圍」會對應到管理規範第4單元「營業秘密的確定」章節;「(二)監控」會對應到管理規範之第5單元「營業秘密的使用管理」及第7單元「網路與環境設備管理」;「(三)使用行為管制」會對應到管理規範之第5單元「營業秘密的使用管理」;「(四)人員管制」會對應到管理規範之第6單元「員工管理」與第8單元「外部活動管理」。 管理規範除了提供更加多元完善的管理做法(如定義出的營業秘密應進行機密分級、設定保密期限建立管理清單;除了管制流通、複製行為,後端的銷毀或使用紀錄留存、預警措施之建立也很重要;對於員工的管控不僅是離職時,更是從入職時就有風險需要管控;或者更後端的爭議處理機制、監督與改善機制之建立等)以外,更重要的是,管理規範納入了企業應考量的相關法律風險,以「(二)監控」之建議為例,管理規範第6.3.2條進一步要求應對員工進行「宣導」,告知員工「會監控其使用營業秘密行為並保存相關電磁紀錄」,此規定對於企業而言十分重要,因為若未進行告知,可能會因為侵害員工的隱私權,違反刑法妨害秘密罪以及通訊保障及監察法之違法監察通訊罪,而使雇主被判刑。 由此可知,企業在建立營業秘密合理保密措施之相關機制時,亦需要注意措施的完善與合法性,企業除了可參考管理規範系統性建立營業秘密管理機制外,亦可以此管理規範做為檢視自身管理措施符合性之依據,進而促進企業有效落實營業秘密管理。 [1]Federal Trade Commission, FTC Announces Rule Banning Noncompetes (2024), https://www.ftc.gov/news-events/news/press-releases/2024/04/ftc-announces-rule-banning-noncompetes (last visited May 15, 2024). [2]Consultation outcome Measures to reform post-termination non-compete clauses in contracts of employment, GOV.UK, https://www.gov.uk/government/consultations/measures-to-reform-post-termination-non-compete-clauses-in-contracts-of-employment#full-publication-update-history (last visited Jun. 19, 2024). [3]同前註,引述原文:「The government will introduce a statutory limit on the length of non-compete clauses of 3 months and will bring forward legislation to introduce the statutory limit when parliamentary time allows.」。 [4]Q&A: Trade secret disputes, Financier Worldwide Magazine, Financier Worldwide Magazine, https://www.financierworldwide.com/qa-trade-secret-disputes (last visited Jun. 05, 2024). [5]<營業秘密保護管理規範>,財團法人資訊工業策進會科技法律研究所網站,https://stli.iii.org.tw/publish-detail.aspx?no=72&d=7212(最後瀏覽日:2024/06/14)。

什麼是日本研究組合?

  所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。

歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP