美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案

  美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2019年8月1 日公布「安全物聯網設備之核心網路安全特徵基準(Core Cybersecurity Feature Baseline for Securable IoT Devices)」指南草案,提出供製造商參考之物聯網設備網路安全基本要素,該指南草案中提出幾項重要核心要素如下:

  1. 設備辨識:物聯網設備必須有可供辨識之相關途徑,例如產品序號或是當連接網路時有具獨特性之網路位址。
  2. 設備配置:獲得授權之使用者應可改變設備的軟體以及韌體(firmware)之配置,例如許多物聯網設備具有可改變其功能或是管理安全特性之途徑。
  3. 資料保護:物聯網設備如何保障其所儲存以及傳送之資料不被未經授權者使用,應清楚可被知悉,例如有些設備利用加密來隱蔽其儲存之資料。
  4. 合理近用之介面:設備應限制近用途徑,例如物聯網設備以及其支持之軟體應蒐集並認證嘗試近用其設備的使用者資訊,例如透過使用者名稱與密碼等。
  5. 軟體與韌體更新:設備之軟體應可透過安全且可被調整之機制進行更新,例如有些物聯網設備可自動的自其製造商取得更新資訊,並且幾乎不需要使用者特別之動作。
  6. 網路安全事件紀錄:物聯網設備應可記錄網路安全事件並且應使這些紀錄讓所有人或製造商可取得,這些紀錄可幫助使用者與開發者辨識設備之弱點以近一步修復。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8297&no=64&tp=5 (最後瀏覽日:2025/11/08)
引註此篇文章
你可能還會想看
南韓KCC課予廣電傳播業者進行數位轉換的法定義務

  為了促進地面廣播電視傳播數位化轉換進程,南韓通訊傳播委員會(Korea Communications Commission, KCC)於2009年6月4日公佈將強制進行HD節目(High-Definition program)改良與制定執行計畫。KCC於2009年6月31日公佈與廣電數位化轉換法令有關之命令修正草案公告,其中將對無法達到要求的廣電傳播業者課予罰鍰或不利益處分。   根據先前執行廣電數位化轉換法令之經驗,KCC提出了相關修正草案。該草案將課予廣電傳播業者進行HD節目製播改良之法定義務,且須改善數位傳輸環境,以使廣電數位化能順利在2012年年底完成。此外,業者必須提出每年的執行計畫報告與公開類比播送終止、實施數位化播送的情況,否則業者將受有不利益之行政處分,例如基地台許可執照將被廢止。   南韓於2008年2月針對廣電類比訊號之關閉制定特別法,並要求在2012年12月31日全面完成廣電傳播數位化。如今為了確保數位化進程可如期完成,強制廣電傳播業者進行相關數位化工作,整體效益有待觀察。

日本修訂《建築節能法》,加強住宅、建築物之節能措施

  日本政府為實現2050淨零碳排目標,內閣於2022年4月22日公布《建築物のエネルギー消費性能の向上に関する法律》(譯:有關建築物能源使用效率提升的法律,下稱本法)修正案,加強住宅、建築物之能效提升措施。本次修正內容,主要包含: 擴大本法適用對象 因本法現僅規範大型規模建物(面積2,000平方公尺以上)及中型規模建物(面積300平方公尺以上,未滿2,000平方公尺);故修正案定2025年起,將所有新建的小型規模建築(面積未滿300平方公尺)及住宅均納入本法規定,不僅要求外牆和屋頂需增厚隔熱材質,並應使用高能效的空調及照明設備,以符節能標準。 擴大領先者計畫(Top Runner program) 以淨零耗能住宅(Zero Energy House, ZEH)及零耗能建築(Zero Energy Building, ZEB)為目標,最遲到2030年逐步提高實施節能標準。 實施節能裝修融資政策 國土交通省為促進既有建築物節能改造及鼓勵引進太陽能發電的新機制,將由住宅局編列預算,透過日本住宅金融支援機構(Japan Housing Finance Agency, JHF)辦理節能裝修低利息融資。

談服務貿易總協定下我國服務業研發補貼措施之國民待遇問題

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

TOP