馬來西亞下議院於2019年7月2日通過新的商標法案,馬來西亞商標法(Trademark Act 1976)為該國商標註冊及使用之規範,自1976年實施至今已經過多次修正。此次新修正不僅擴大非傳統商標之註冊申請,也包含集體商標的保護、商標得作為金融工具、單一國際商標申請程序及侵權補救措施等。新法修正後,除原先傳統商標(如簽名、文字、字母、數字、圖形)得以申請,允許氣味、聲音、形狀及顏色等註冊為商標。擴大保護範圍除考量國內外貿易所需,也為吸引國際企業投資馬來西亞。
另一方面,本次修正也被視為加入商標國際註冊馬德里體系(The Madrid system for the international registration of marks) 預作準備。該體系包含由世界智慧財產權組織(WIPO)管理的一項國際條約:「商標國際註冊馬德里協定有關議定書(Protocol Relating to the Madrid Agreement Concerning the International Registration of Marks)」(下稱議定書),若申請人為有加入馬德里體系之國家國民,即可利用單一商標於該體系內之國家註冊商標,且僅得以一種語言且支付一筆費用尋求對同一商標在多國內受保護。
根據世界智慧財產權組織截至2019年統計,「馬德里議定書」已有105位成員,涵蓋121個國家,其中也包含東協大部分成員。由於東協(ASEAN)中,僅剩馬來西亞與緬甸尚未加入該議定書,故也被視為履行東協共同體之義務。
近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
美國專利商標局(USPTO)針對「第三人先前技術意見書(Preissuance Submissions)提呈制度」發布最終規則USPTO日前針對「第三人先前技術意見書提呈制度」,於7月17日發布最終規則( Final Rules)。此項規則的頒佈,主要是因應2011年9月「Leahy-Smith 美國發明法案」(Leahy-Smith America Invents Act,簡稱AIA)的修法,所為的配套措施。 所謂「第三人先前技術意見書提呈制度」是指:賦予第三人權利,得於專利審查程序中提供專利審查員相關先前技術文獻,作為審查核駁之參考。美國在2011年討論AIA修法之際,大多肯定此制度可提升專利審查之品質,因而修法放寬了第三人可提呈的文獻類型、期限。而本次USPTO發布的最終規則,便以此修正為背景,進一步具體說明相關程序適用規則,主要包括: (1)可提呈的文獻包含專利案、已公開的專利申請案、及其他與審查核駁相關並已公開之文獻;但不包含法院機密文件、商業機密文件及其他內部未公開之訊息;(2)第三人得利用USPTO現有的電子申請系統(EFS-Web)申請;(3)第三人得保持匿名,例如透過律師提呈文獻;(4)縱使USPTO駁回其申請,第三人仍可在法定期限內重新提交新的申請;(5)提呈之文獻如為外文文獻,第三人須提供英文翻譯本。 如同2011年修訂通過的「Leahy-Smith 美國發明法案」,此次USPTO所頒布的最終規則亦將於2012年9月16日起施行。預計將擴大第三人提呈先前技術意見書之比例,但對於專利申請人將造成甚麼影響,值得持續觀察。
避免昂貴訴訟成本,微軟參與專利審查團隊微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。 Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。 根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。 受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。 Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。