根據日本特許廳調查,國際(如韓國,泰國)在處理智財爭議時,往往會傾向採取非訟的方式解決智財爭議,例如透過智財局進行智財調解。日本也預計在2019年10月1日起於東京及大阪兩地的地方法院導入新的智財調解制度,用以快速解決智財(例如專利權,著作權等)相關爭議。
普遍而言智財爭議往往會耗費企業或當事人相當長的時間,且爭議的智財標的在訴訟期間也無法被使用,故日本政府計劃推行新的智財調解制度。新的智財調解制度,除了能降低訴訟成本外,日本政府更迫切想解決的問題是,不希望爭議的智財標的影響企業經營。
在日本智財訴訟是公開,法官在聽過兩造說法後會由法官做單方面的判決,且根據日本最高法院的資料顯示,智財訴訟平均需花費十二點九個月的時間才能結案。有的從訴訟提起到一審宣判就需花費一年又八個月,再到最高法院判決確定還需花費一年又二兩個月。
而日本新推行的智財調解制度計畫將透過視訊的方式,讓當事人與法官進行非公開的對話,並儘量促成兩造達成合意,調解過程最短僅需花費約三個月的時間就能有結果,若調解沒有共識,當事人一樣能進行智財訴訟。智財調解制度除了能有效減少爭議時間外,費用上智財調解申請費也遠低於智財訴訟的申請費。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐洲食品安全局頒佈利益申報實施細則為了有效管理歐洲食品安全局(European Food Safety Authority, EFSA)內部各項活動間之利益管控與監督,EFSA日前於3月5日公布利益申報(Declarations of Interest, DOIs)施行規則(Implementing Rules),並計畫於2012年7月1日正式實施,且同時搭配一個為期4個月的過渡(Transition Period)配套措施方案。該利益申報施行規則,乃為EFSA於今年初所核准之「獨立性與科學決策過程」(Independence and Scientific Decision-Making Processes)政策的基礎規範項目之一。 本次EFSA所頒布之利益申報施行規則,其訂定之理由係因,原任職於EFSA旗下基因工程植物之首席風險評估專家,轉任至一家專門研發及生產該種植物之生物科技公司;為避免並且釐清相關因該事件所衍生之利益衝突問題,乃制定本規範。故此,為具體有效管理EFSA內部人員與其他涉及EFSA各項活動之機構間的利益監督事宜,EFSA遂進一步於今年初開始著手進行相關措施之規劃。目前該利益申報施行規則除了主要針對EFSA旗下之各層級人員訂定各項利益類型之規範準則外,更重要的是,其亦提供其旗下之專業科學研究人員,各項能有效具體確認其利益界線之劃分的保護措施。由於該利益申報施行規則授與EFSA選取與管理利益申報議題若干彈性,因此EFSA能具體且有效的利用相關規範延攬頂尖研究人員,進而協助EFSA提升其內部研發人員之創新研發能力。 政府機關成員之利益申報與迴避問題,乃為全球各國政府需面對之問題,而對於如何有效且彈性的進行相關議題之管控,更是相關政策制訂時需加以考量之點。EFSA之利益申報施行規則不僅有效管理內部人員之利益衝突與申報問題,同時亦藉由彈性的管理規範方式,延攬優秀頂尖人才,達到具體提升研發水準之功效;對此,EFSA之規範方式與運作成效,實值得加以觀察與效仿。
何謂「TLO」?「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。 日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。 在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。
避免昂貴訴訟成本,微軟參與專利審查團隊微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。 Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。 根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。 受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。 Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。