歐洲創新計分板(European Innovation Scoreboard, EIS)為針對歐盟成員國以及其他歐洲國家的研究與創新績效、創新體系等進行的評比報告,由歐盟執委會(European Commission, EC)每年發布,協助了解各國創新力態樣與市場競爭優勢。
EIS以綜合創新指數(Summary Innovation Index)作為整體評估標準,區分為四大類指標、10個創新構面,並細分為27個評估子標。四大類指標及相關架構如下:
2019年6月發布歐洲創新計分板報告,歐盟創新發展連續四年均有進步。報告將歐盟會員國創新表現分為四組,分別為:1.創新領導者:包含丹麥、芬蘭、挪威等國;2. 優秀創新者:包含奧地利、比利時、德國等;3.中等創新者:包含希臘、匈牙利、義大利等;最後一組4.適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞等。該報告亦個別在特定領域上進行排名,例如在創新研究體系領域,盧森堡和丹麥表現最好,友善創新環境則以丹麥及芬蘭為最優,企業投資由德國和芬蘭領先,智財領域應用上則以中等創新組的馬爾他居冠。
本文為「經濟部產業技術司科技專案成果」
瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年9月18日發布2020智慧城市指數報告(Smart City Index 2020)。該報告為IMD和新加坡科技設計大學(Singapore University of Technology and Design, SUTD)共同出版,該報告評比109個城市,前5名智慧城市分別為:新加坡、赫爾辛基(芬蘭)、蘇黎世(瑞士)、奧克蘭(紐西蘭)、奧斯陸(挪威)。其他重要城市排名包括紐約第10、倫敦第15、香港第32、首爾第47、巴黎第61、東京第79、上海第81名等。 報告中智慧城市五大評比關鍵標準分別為:健康與安全(health and safety)、運輸及交通(mobility)、城市活動(activities)、機會(opportunities)和政府治理(governance)。每個標準又可區分為「結構面」(Structures)和「科技面」(Technologies)各20個細項評比,前者包含如城市基礎衛生、空氣汙染、醫療設備充足程度、交通擁塞度、綠地空間、文化活動、就業率以及居民和政府機關的互動度等;而後者則包含免費公共WIFI普及度、電子設施使用便利度(例如以空氣汙染偵測、安排醫療活動、文化活動線上購票和共享乘車以減少交通擁塞等)、大眾運輸動態資訊及其他電子化服務等。 今年評比的重點之一,在於城市「科技面」指標如何因應COVID-19此種大型傳染病。智慧城市的發展對傳染病有重要防禦作用,排名較前段的城市相對能以科技應對災難型傳染病。此外,報告中認為若政府可以行使更多公權力,將可以藉由管理科技為城市居民帶來更多便利生活。從報告整體排名變化中看出「低度發展」城市比先進城市更容易取得大幅度進步,以及世界各國發展「第二城市」的趨勢,例如西班牙畢爾包的排名(24名)較馬德里(45名)佳,英國伯明翰今(2020)年排名較2019年進步12名,而倫敦僅進步5名次。 我國臺北市綜合評比排名第8,在亞太地區高居第2,僅次於新加坡。其中評比標準中,分數較高有免費公共WIFI普及度、醫療服務設備充足、用3C設備預約就診或其他醫療行為的容易度、文化活動線上購票方便度;分數較低的有交通壅塞問題、綠地不足以及政府腐敗與效率不彰等。
美國商品期貨交易委員會發布《自願碳額度衍生性金融商品上市指引》,闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)於2024年10月15日發布《自願碳額度衍生性金融商品上市指引》(Commission Guidance Regarding the Listing of Voluntary Carbon Credit Derivative Contracts),闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素,旨在推動仍處於發展階段的自願碳額度商品之標準化,以強化其透明度與流動性。本指引認為,決定進行上市交易前應先行考量下列因素: 1.透明度(Transparency):契約應公開碳額度方案(crediting program)與所認證減量專案活動之相關資訊。 2.外加性(Additionality):若無碳額度構成誘因,則其所代表之碳減量或移除將無從發生。 3.永久性與應對反轉風險(Permanence and Accounting for the Risk of Reversal):碳額度方案所核發之碳額度若遭撤銷,應具有充足緩衝儲備(buffer reserve)以替換品質相當之碳額度。 4.穩健量化(Robust Quantification):量化方法應穩健、保守且透明,以確保核發碳額度數量準確反映減排或移除量。 5.治理(Governance):碳額度方案應具備公開治理框架以建構獨立性、透明度及問責制度。 6.追蹤與避免重複計算(Tracking and No Double Counting):碳額度方案應追蹤碳額度之核發、轉讓及註銷,並確保已註銷額度不會再被使用而導致減排或移除量重複計算。 7.第三方確證及查證(Third-Party Validation and Verification):契約應明確記載第三方確證及查證程序,以確保碳額度實物交割符合品質要求,並與自願碳市場最新標準一致。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
德國聯邦議院通過能源效率法,節能目標將入法德國聯邦議院於2023年9月21日通過《能源效率法》(Energieeffizienzgesetz, EnEfG)草案,確立德國能源效率目標,並規範公部門及企業的具體效率措施,及首次定義資料中心的能效標準,本法並要求德國2030目標應符合歐盟能源效率指令(EU Energy Efficiency Directive, EED)。預計聯邦參議院將在10月底審議該法律,之後將盡快生效。本次修法重點如下: 1.能源效率目標:EnEfG規定2030年德國減少初級和最終能源消耗的目標,以及2045年減少最終能源消耗的目標。以最終能源消耗而言,此代表著2030年減少約500TWh(與目前水準相比)。未來,聯邦政府將在立法期開始時,定期向聯邦議院通報目標實現情況,並在必要時決定調整工具組合。 2.聯邦及各邦的節能義務:從2024年起,聯邦政府和各邦政府有義務採取節能措施。至2030年,聯邦及各邦的最終能源消耗每年各分別節省45TWh和3TWh。 3.公部門在節能減排方面樹立榜樣:為了使聯邦和邦層級的公部門在提升能源效率方面能做為表率,未來將導入能源或環境管理系統。此外,EnEfG也規定節能措施的實施,目標是每年最終能源消耗減少2%。 4.企業能源或環境管理系統:EnEfG要求能耗較大(超過平均7.5GWh)的企業導入能源或環境管理系統,最終能源消耗總量為2.5 GWh以上的企業,則需要在實施計畫中,記錄和公布節能措施。此種作法不僅提高能源消耗的透明度,同時也讓企業可自行決定導入哪些措施以及預計的成果。 5.資料中心的能源效率及餘熱要求:新的資料中心應遵守能源效率標準,還必須利用餘熱(Abwärme)。未來,所有大型資料中心營運商應使用再生能源電力,並於公共登錄冊中記載能源消耗的資訊,以及向客戶告知其具體能源消耗狀況。 6.餘熱的避免與利用:未來應盡可能避免生產過程中產生餘熱。如果無法避免,則應利用餘熱。此外,有關企業餘熱潛力的資訊將綁定並公布在一新平台上。