澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則

  2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下:

  1. 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。
  2. 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。
  3. 應將資料近用權利與隱私保障納入立法中。
  4. 應以包容性與科技中立用語定義資料。
  5. 應使政府管理資料措施與現行個資保護目的協調一致。
  6. 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。
  7. 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。
  8. 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。
  9. 認知到不可逆的去識別化資料在許多情況下的困難度。
  10. 支持資料安全保護。
  11. 定期檢查資料隱私保護狀態與措施。

  以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。

本文為「經濟部產業技術司科技專案成果」

相關附件
※ 澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8317&no=64&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美最高法院擬受理各州要求聯邦政府採訂定更為嚴格的環保標準以抑制全球暖化

  二氧化碳和其他類似的排放氣體被認為會提高地球大氣層的溫度,是全球溫度上升的元凶。二00三年以來,美國境內陸續有十二個州、多個城市和十幾個環保團體循法律途徑,針對聯邦環保局( Environmental Protection Agency, EPA )一直不願意對新車制定更嚴格的廢氣排放標準以降低溫室排放量,採取法律行動。   美國最高法院最近決定將重新考量,聯邦政府是否應依照部分州和市政府及環保團體要求,制定新車廢氣物排放標準,以對抗全球暖化的問題。本案首開先例,成為美國高等法院針對政府的環保法令進行裁決。   包括美國加州、麻州和紐約州等州政府在告訴中指出,其認為根據聯邦的「空氣清淨法」, EPA 有責任針對排放二氧化碳和其他三種氣體的車輛和大型工廠進行管制;然而, EPA 則堅持「空氣清淨法案」中並沒有規範到全球氣候變化的情狀,也沒有將二氧化碳定義為污染源,故聯邦政府認為應由相關單位和業者自行制定控制標準。   在提交最高法院的文件中,美國聯邦政府稱這項官司只是一種「猜測」,目前根本不清楚全球暖化是否和新車廢氣排放有關,也沒有任何證據可以證實,使用可使燃料燃燒更完全的車輛,是否會對氣候變化有重要的影響。美國政府認為,解決全球暖化現象的議題,可能透過國際努力更有效果。

美國環境保護署(EPA)發布顯著新種使用規則(SNURs),將影響單壁及多壁奈米碳管(Carbon Nanotubes)之使用

  美國環境保護署(Environmental Protection Agency,以下簡稱EPA)於2010年9月17日聯邦政府公報中,依據毒性物質管制法(Toxic Substances Control Act,以下簡稱TSCA)section 5(a)(2)授權,發布了顯著新種使用規則(Significant New Use Rules,以下簡稱SNURs)的最終規則(final rule)。此項規則於2010年10月18日生效,任何想要製造、輸入以及加工單壁奈米碳管(single-walled carbon nanotubes,以下簡稱SWCNTs)及多壁奈米碳管(multi-wall carbon nanotubes,以下簡稱MWCNTs)兩項化學物質者,必須依照TSCA section 5(a)(1)要求,在進行上述利用活動的至少90天前,報經EPA核准,否則不得使用。   事實上,EPA曾於前(2009)年6月24日發布上述SNURs的直接最終規則(direct final rule),徵詢公眾意見,並在同年8月21日撤回該規則。在重新提案的規則中,主要是新增SWCNTs、MWCNTs釋放於水中的顯著新種使用態樣,並將已完全反應、結合或嵌入已完全反應之聚合物基(polymer matrix)以及嵌入不再進行機械加工外其他處理之永久硬性聚合物形式(permanent solid polymer form)之SWCNTs、MWCNTs物質,排除在新SNURs適用範圍之外。   目前,依照TSCA section 5(e)之規定,若系爭之化學物質已列名於TSCA section 8(b)所建立之現存(existing)化學物質目錄(INVENTORY)中,其他化學物質生產者欲生產該種化學物質時,並不需再向EFA進行通報程序。然而,若EFA對該列名之化學物質曾發出TSCA section 5(e)下之具風險性命令(risk-based order),則相關之化學物質生產者須於生產前依據TSCA section 5(a)(2)規範中之SNURs規定通報EFA,使得EFA於生產前仍有再次檢驗該系爭化學物質的機會。   這一次,EPA以制訂SNURs之方式,要求所有製造、輸入、加工該項化學物質者,有義務通報任何與原同意命令所定條款不同的使用活動。這樣的規範變動,預計將對奈米材料的製造及運用活動造成不小的影響。

歐盟個人資料保護小組提出智慧電錶隱私指導原則

  由於近年來運算技術的成熟,使得許多仰賴高運算技術的產業有重新發展的契機,智慧電網正是其中一例;而智慧電網所涉及的資訊繁多,例如個人資產的位址資訊可能會被納入電網中作定位與分析,因此其所衍伸的個人資料與隱私保護議題,近來備受重視。   歐盟個人資料保護小組(Article 29 Data Protection Working Party)於今年四月針對智慧電錶的隱私議題,提出指導建議(Opinion 12/2011 on Smart Metering),並明確指出,電網中的電錶會有一組獨特的識別碼(Meter Identification Number),此可連結至特定用戶,因此由電錶蒐集到的資訊,大部分都符合歐盟個人資料保護指令(Directive 95/46/EC)中的「個人資料」(Personal Data)。   倘若要對透過電錶所蒐集的資料進行處理,必須要基於充分告知(Fully-informed),取得用戶同意;也應該讓用戶依照意願自主行使同意或撤銷該同意,此會涉及電錶設計的方式,該小組建議可在用戶端電錶的控制鑲板上設置「按鈕」(Push Button),讓用戶得隨時選擇同意與否。另外,智慧電錶亦具有設定資料傳輸頻率的功能,此攸關資料被蒐集之範圍是否妥適,舉例言之,倘若用戶與電網服務提供者之契約,是全天以同一個費率計算電價,則其電錶會把整日用電量讀成一筆資料,反之倘若用戶是採用一天分不同時段不同費率的方式,則該電錶會每日分成數個時段讀取用電量;惟在供應端可遠端遙控這些電錶讀取頻率的情況下,應確保這些資料僅於系統運行所需,方傳輸至供應端供讀取。   其他的電表資訊處理細節,事實上類似於電信事業處理交通資訊或位址資訊的作法,例如不再用到的電錶資訊,應盡速刪除之;供應端也必須訂定書面的資料保存政策、評估所需電錶資訊之目的、並在該目的範圍內以最小限度原則保存之。

TOP