2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下:
以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。
本文為「經濟部產業技術司科技專案成果」
歐盟理事會(European Council)表示已與歐盟執委會(European Commission,以下簡稱「執委會」)、議會(European Parliament)於2023年11月22日完成《保護歐盟及其成員國免受第三國經濟脅迫規則》(Regulation on the protection of the Union and its Member States from economic coercion by third countries,以下簡稱「反脅迫規則」)之立法流程,並將於2023年12月27日正式施行生效。 該法起源於中國大陸於2021年為抗議立陶宛(Lithuania)同意我國政府以「臺灣」名義在其首都維爾紐斯(Vilnius)設立代表處,停止輸入多項產品,導致立陶宛對中貿易額大幅降低。歐盟為避免特定國家持續利用此種經濟脅迫手段影響歐盟交易市場與會員國之主權,決定立法採行反制措施,並於2021年之貿易政策回顧(2021 Trade Policy Review)公布《反脅迫規則》之立法框架。 根據《反脅迫規則》,執委會得根據會員國、歐盟議會及其他經濟聯盟所提供之資訊進行職權(ex officio)調查;亦可依照受脅迫之會員國或企業的請求進行調查。在調查階段,執委會會在4個月內判斷特定國家之行為是否確實造成經濟脅迫,若確實存在,將進一步評估其對歐盟帶來之影響。調查完成後,若他國政府確實對歐盟成員國或企業實施經濟脅迫手段,執委會將提交報告與理事會進行決議,通過後,執委會將先採行不干涉措施(non-interventionist measures),與實施經濟脅迫手段之國家進行協商,並要求賠償因經濟脅迫而產生的損害。若採行不干涉措施後仍無改善,執委會得考慮採行干涉措施(interventionist measures),包含但不限於限制特定企業進入歐盟市場與投標政府採購案;終止對特定國家的關稅優惠,並課予額外之關稅等,以阻止該特定國家繼續干擾歐盟經濟體。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
世界經濟論壇發布《贏得數位信任:可信賴的技術決策》世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。 由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟: 1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。 2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。 3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。 4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。