2019年7月24日,世界智慧財產權組織(World Intellectual Property Organization, WIPO)、美國康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)共同發布「2019年全球創新指數報告」(Global Innovation Index 2019, GII)。GII報告每年度發行一份,希望幫助全球決策者更有效地制定政策及促進創新。本年度的報告主題是「創造健康生活─醫療創新之未來展望」,內容展望創新醫療,包括:導入人工智慧(artificial intelligence, AI)、基因體學(genomics)和健康醫療相關的手機應用程式,將會改變醫療照護。醫療創新無論是在診斷或預後,由於大數據、物聯網(Internet of Things, IoT)和人工智慧等新興科技的興起而改變。伴隨而來的是倫理、社會經濟等多方面、史無前例且迫切的挑戰。報告中提及幾項重要發現:
GII依據80項指標評比129個經濟體,指出,全球創新指數最高的國家排名前五名為:瑞士、瑞典、美國、荷蘭、英國,均為高所得國家。中高所得國家創新指數前三名為:中國、馬來西亞、保加利亞;中低所得國家前三名為:越南、烏克蘭、喬治亞;低所得國家前三名則是:盧安達、塞內加爾、坦尚尼亞。至於區域性的創性領袖國是印度(中亞與南亞)、南非(撒哈拉以南非洲)、智利(拉丁美洲和加勒比海地區)、以色列(北非與西亞)、新加坡(東南亞、東亞與大洋洲)。最頂尖的自然與科技聚落所在國家為:美國、中國、德國;並特別指出巴西、印度、伊朗、俄羅斯、土耳其表現亮眼。最頂尖五大聚落是東京-橫濱(日本)、深圳-香港(中國大陸)、首爾(南韓)、北京(中國大陸)、聖荷西-洛杉磯(美國)。
本文為「經濟部產業技術司科技專案成果」
據報載, 5 月 25 日 起在我國舉行兩天之台灣與美國貿易投資架構協定( TIFA )會談,藥廠權益乃雙方談判焦點,美方這次來台所提出之談判項目中,對台灣藥廠衝擊較大的是資料專屬權( Data Exclusivity ),及專利連結( Pattern Linkage )兩項,本土製藥業擔心,政府若妥協將可能造成台灣藥廠及研究單位新台幣上百億元的損失。 儘管去年初立法院已經三讀通過藥事法 40 條之 2 的「資料專屬權保護」條文,但預料美方這次將要求政府重新修法,以保障外商藥廠的權益。此外,專利連結( patent linkage )也是衛生署嚴陣以待的項目,外商訴求此一機制之目的,係希望透過專利資訊之揭露,使任何申請上市許可之學名藥品,均係在專利到期後或未侵害專利之前提下,使得上市。 專利連結制度首見於美國,美國食品藥物管理局 (FDA) 對藥品有所謂之「橘皮書」,要求公布各藥品的專利內容及安全性與療效資訊,並以此作為日後學名藥賞上市或與原開發藥廠發生專利侵權爭訟時之參考。業界認為,如果台灣也比照美國 FDA 專利連結的規定,可能導致外商藥廠得以輕易對台灣藥廠展開侵權訴訟官司,衝擊我國製藥產業。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
日本政府研擬修正「能源使用合理化法」以提升能源效率日本經濟產業省於3月13日將「能源使用合理化法(エネルギーの使用の合理化に関する法律,簡稱節能法)」修正草案送交國會審議,節能法對於日本之能源供需之穩定具有重大貢獻,也是永續發展之必要法制,由於近年來民生及產業部門之能源消耗持續增加,提升該部門之能源使用效率成為當務之急。 本次修正草案主要內容如下:在因應民生用電尖峰時刻之電力需求上,除了原本之節能政策外,強化電池及能源管理系統(含建築及家庭能源管理系統:Building Energy. Manager System&Home Energy Management System, 簡稱BEMS、HEMS)之運用、自主發電設備之建構、蓄熱式與天然氣式空調及建築節能改造,以減少尖峰時期之用電需求;在建築材料節能要求上,制定各種建築材料之節能標準,使新建築達成低能源消耗之節能標準;並擴大Top Runner制度(凡適用品項欲上市之新產品均須優於現行市面上所有能源產品之耗能標準)之機器設備適用對象。 由於日本於福島核災後面臨供電吃緊之情況,提升能源效率並節約能源消耗成為當務之急,新修正草案課予建築材料之節能義務標準,希望藉由該草案之通過實行,有效抑制電能消耗。
OECD:汙染性能源稅收過低無法激勵低碳轉型經濟合作與發展組織(OECD)2019年9月20日根據《2019年能源使用稅(Taxing Energy Use 2019)》報告指出,汙染性能源會造成地球與人類健康的危害,而課徵「汙染性能源稅」是降低其排放的有效方法,且稅收尚可用於協助低碳轉型,但在報告所研究的44個國家能源排放量佔全球80%以上,與能源有關的二氧化碳排放中卻有70%未徵稅,課徵的汙染燃料稅過低,無法促使其改用較為清潔的能源(cleaner energy),而無法鼓勵低碳能源轉型。 能源稅中,道路燃料稅相對較高,但無法反映其造成環境損害的成本;煤炭稅在多數國家中幾乎為零,但煤炭的碳排放幾乎佔了能源碳排放的一半;天然氣是較為潔淨的能源,其稅收通常較高。在非道路的能源碳排放中,有97%被徵稅,但44個國家中只有4個國家(丹麥、荷蘭、挪威、瑞士)的徵稅在每噸30歐元以上,遠低於環境損害的程度,近年來甚至有國家降低能源稅。 該報告表示,改善稅收政策、為低碳技術提供公平的機會,將有助於將投資轉向更環保的選擇,且額外的稅收可用於社會目的,例如降低所得稅、增加基礎設施或醫療健保支出,OECD未來將衡量減排與其他社會目標(如健康與工作),採取有效的激勵措施減少碳排放,並呼籲各國政府應正視此一問題。