德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告

  德國資料倫理委員會(Datenethikkommission, DEK)於2019年10月針對未來數位化政策中的重點議題發布最終建議報告;包括演算法產生預測與決策的過程、人工智慧和資料運用等。德國資料倫理委員會是聯邦政府於2018年7月設置,由多位學者專家組成。委員會被設定的任務係在一年之內,制定一套資料倫理標準和指導方針,作為保護個人、維持社會共存(social coexistence)與捍衛資訊時代繁榮的建議。

  最終建議報告內提出了幾項資料運用的指導原則,包含:

  1. 以人為本、以價值為導向的技術設計
  2. 在數位世界中加強數位技能和批判性思考
  3. 強化對個人人身自由、自決權和完整性的保護
  4. 促進負責與善意的資料使用
  5. 實施依風險調整的監管措施,並有效控制演算法系統
  6. 維護並促進民主與社會凝聚力
  7. 使數位化戰略與永續發展目標保持一致
  8. 加強德國和歐洲的數位主權

相關連結
你可能會想參加
※ 德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8356&no=64&tp=1 (最後瀏覽日:2025/05/19)
引註此篇文章
你可能還會想看
美國於2020年12月4日正式施行聯邦《物聯網網路安全法》

  美國現任總統川普(Donald J. Trump)於美國時間2020年12月4日簽署物聯網網路安全法(IoT Cybersecurity Improvement Act of 2020),針對美國聯邦政府未來採購物聯網設備(IoT Devices)制定了標準與架構。   該法要求美國國家標準技術研究院(National Institute of Standards and Technology, NIST)應依據NIST先前的物聯網指引中關於辨識、管理物聯網設備安全弱點(Security Vulnerabilities)、物聯網科技發展、身分管理(Identity Management)、遠端軟體修補(Remote Software Patching)、型態管理(Configuration Management)等項目,為聯邦政府建立最低安全標準及相關指引。如果使用政府機關所採購或獲取之物聯網設備無法遵守NIST制定的標準或指引,則不得續簽採購、獲取或使用該設備之契約。   安全標準和指引發布後,美國行政管理和預算局(the Office of Management and Budget)應就各政府機關的資訊安全政策對NIST標準的遵守情況進行審查,NIST每五年亦應對其標準進行必要的更新或修訂。此外,為促進第三方辨識並通報政府資安環境弱點,該法要求NIST針對聯邦政府擁有或使用資訊設備的安全性弱點制定通報、整合、發布與接收的聯邦指引。   雖然該法適用範圍限於聯邦政府機關,惟因該法限制聯邦政府機關採購、獲取或使用不符合NIST標準或指引的物聯網設備,將促使民間業者為獲取美國政府訂單而選擇遵循NIST標準,未來該標準可能成為美國物聯網安全的統一標準。

政府資訊業務委外涉及個人資料保護法律責任分析及因應建議

何謂美國專利審查之「Track One程序」?

  美國專利審查中之所謂「Track One程序」,是指美國在2011年所通過的〈美國發明法〉( Leahy-Smith American Invention Act, AIA)中建立的一套快速審查專利的審查程序。   〈美國發明法〉第11條(h)項中要求,申請人繳交優先審查費用(Prioritized Examination Fee)後,美國專利審查主管機關,美國專利商標局(United States Patent and Trademark Office, USPTO)應提供優先審查服務。因此在Track One程序中,專利申請人僅需要付出4800美元的優先審查費,就可以獲得美國專利商標局的優先審查服務。   在此之前,美國專利商標局也曾經推出過類似的快速審查程序,亦即「加速審查」(Accelerated Examination, AE)程序,但在該加速審查程序中,申請人必須要自行執行對既有技術的檢索,並且提供輔助文件來解釋其請求項在既有技術下之可專利性。而相比之下,申請人在Track One程序中,僅需要負擔4800美金就可以與加速審查程序中相同,在12月內完成審查,且不需要負擔自行檢索技術的義務。也因此在Track One程序推出之後,加速審查程序的申請案件數量也受到影響,日前美國專利商標局即曾經徵詢公眾意見,評估是否仍需保留加速審查之程序。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP