《確保關鍵礦產安全可靠供應的聯邦戰略》(A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals),為美國商務部於2019年6月4日發布的一項國家層級礦產行動計劃,制定依據為美國總統於2017年12月20日發布的13817號行政命令,戰略目標是強化美國製造業與國防工業及礦產供應鏈彈性,推進研究開發工作,減少美國對中國大陸等外國實體的關鍵礦產資源依賴。
美國商務部表示,確保關鍵礦產供應穩定及供應鏈彈性,對於美國經濟繁榮與國防安全至關重要,過去美國過分依賴外國關鍵礦產資源及供應鏈,導致經濟和軍事出現戰略性弱點。據統計共有35種與美國經濟與國家安全相關的礦產品,包括鈾、鈦和稀土元素,為智慧手機、飛機、電腦和GPS導航系統及風力發動機、節能照明與混合動力汽車電池等綠色科技產品的必要組成。35種關鍵礦產中有31種選擇進口,其中更有14種關鍵礦產是完全依賴國外進口。
《確保關鍵礦產安全可靠供應的聯邦戰略》提出6項行動綱領包括:(1)推動關鍵礦產供應鏈的轉型研究、開發與部署;(2)加強美國關鍵礦產供應鏈和國防工業基地;(3)強化與關鍵礦產相關的國際貿易合作;(4)提升對國內關鍵礦產資源知識;(5)提升在美國聯邦土地上獲得關鍵礦產資源的機會,並簡化授權開採的審查程序;(6)增加美國關鍵礦產資源勞動力等。
本文為「經濟部產業技術司科技專案成果」
德國KOINNO創新採購中心是由德國經濟暨能源辦事處(Bundesministerium für Wirtschaft und Energie)轄下的倉儲管理、採購與物流經濟協會(Bundesverband Materialwirtschaft,Einkauf und Logistik e.V, BME)所執掌,該協會主要任務為關於政府採購與各領域的物流管理的研發成果技術移轉、促進職業與終生教育的補助與經驗交流,目的在於創造未來趨勢、經濟發展與鼓勵創新。而KOINNO創新採購中心的成立宗旨即是持續提供政府採購的創新來源,並引導具有創新元素的政府採購實踐為成功經驗與最佳練習。 其中政府採購方面,BME在2004年建立該平臺,其功能為提供使研發成果能最佳實踐的對話交流、創造未來發展趨勢與創新、將研發成果技轉給採購機關與提升政府採購的價值。德國慕尼黑國防大學的公共採購法學與管理研究中心(Forschungszenturm für Recht und Management öffentlicher Beschaffung der Universität der Bundeswehr München,FoRMöB)是KOINNO的合作夥伴,同時也是德國唯一以企業經營與法學觀點分析公共採購問題的跨領域研究中心。
歐盟訂定新規範 管理傳統草藥品上市近年來,歐洲市場對傳統草藥的接受程度逐漸上升。傳統草藥銷售市場在歐盟成員國正在快速成長,其中從中國進口的傳統中藥數量更以倍數上升。目前歐洲市場上的天然植物藥約略可分為三大類:第一類是處方藥,用於治療危重病症的植物藥針劑也包括在內;第二類是非處方植物藥;第三類是保健製藥,可在保健食品店購買。歐盟去年通過的傳統草藥品指令(EU Directive on Traditional Herbal Medicinal Products)自2005年10年31日起,已全面生效適用於歐盟地區。該指令為傳統植物來源藥品於歐盟境市場內銷售,開啟了依照簡化查驗程序上市的途徑,但也限制了部分草藥品的上市可能。 其中較具衝擊性的是:傳統使用要件之認定嚴格。根據指令第16c(1)條,此一傳統使用歷史必須是30年以上,且其中至少有15年是在歐盟境內的使用歷史,方可考慮其安全性及療效。「傳統使用」仍須有相關文獻及專家證明其:(1)已使用相當年限之客觀事實、(2)具有安全性與療效之可信度,因此,簡化程序並無法適用於”偏方”之傳統草藥。而「必須是在歐盟境內至少有15年的使用歷史紀錄或資料」,更大大限制了在1990年前尚未進入歐盟會員國的草藥品,將可能因此被擠出歐盟市場。 該指令規定了七年的緩衝限期,可讓歐盟會員國調整不符合簡化查驗程序申請資格、但在該指令生效前已在各會員國市面上銷售的草藥品。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
污者自付 中國大陸擬徵生態稅中國大陸能源基金會副主席楊富強日前透露,能源基金會、世界自然基金會與國家財政部正在研討開徵「生態稅」。目前,正在為能源對環境的影響成本進行核算,年內相關草案將出爐。 據中國大陸媒體報道,世界自然基金會氣候變化與能源項目負責人甘霖表示,生態稅主要目的就是為了保護生態環境和自然資源,向所有因其生產和消費而造成外部不經濟的納稅人課徵的稅收。 生態稅涉及所有消費化學能源的行業,讓企業去承擔環境成本,實現生態和資源價值的合理補償。目前,生態稅的標準正在研討中,不同的行業對應不同的稅收標準。這個標準與企業的排放有關。根據企業排放量的多少,制定一個限定的比例,再乘以企業的年生產量。也就是說,「企業污染的越多,承擔的環境成本就會越高。」 甘霖指出,目前綠色能源的環境績效還不能完全轉化為經濟效益,綠色能源單位建設投資高及利用率偏低,造成綠色能源價格較高,從而無法與傳統能源競爭,成為影響綠色能源發展的一個瓶頸。現在運用稅收手段,徵收生態稅,就是要使傳統能源價格升高,從而縮小傳統能源與綠色能源之間的差價,推動全社會積極使用綠色能源。