日本《科學技術指標》

  日本《科學技術指標》為文部科學省直接管轄之國立實驗研究機關「科學技術與學術政策研究所(NISTEP)」於每年度發布,主要為讓閱讀者基於客觀而定量的數據,體系性地掌握日本國內科學技術活動的基礎資料,將科學技術活動區分為「研究開發費」、「研究開發人才」、「高等教育與科技人才」、「研究開發產出」、以及「科技與創新」等5個類別,同時制定約180個指標以表達日本國內狀況。本年度公布的《科學技術指標2019》,則新增了「日本與美國各部門擁有博士學位者」、「各產業研究人才集中度與高端研究人才活用程度間之關係」、「主要國家取得博士學位之人數的變動狀況」、「運動科學研究類論文動向」、「主要國家貿易額度的變動狀況」、「各國與各類型獨角獸企業數」等20個指標。

  依《科學技術指標2019》分析,日本的研究開發費與研究者人數於日、美、俄、法、英、中、韓等七個國家中皆位居第三,論文數則為世界排名第四,受高度矚目的論文數世界排名第九,專利家族(Patent Family)數世界排名第一而與去年相同。就產業的部份,研究者中擁有博士學位者之比例依據產業類型的不同而有所差異,與美國相較,高階人才之實際就業情況未能充分發揮其所學。另一方面,就每一百萬人中有取得博士學位的人數,在各主要國家當中,僅有日本呈現減少的趨勢。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本《科學技術指標》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8364&no=67&tp=1 (最後瀏覽日:2026/01/02)
引註此篇文章
你可能還會想看
歐盟透過生態創新(Eco-innovation)減少小客車之二氧化碳排放量

  小客車(passenger car)排放之二氧化碳(CO2)約佔全歐洲排放總量之12%。為落實歐盟第443/2009號規則(Regulation (EC)No 443/2009)關於減少輕型交通工具CO2排放所設定之新小客車排放表現標準,歐盟執委會於今年(2011)7月25日通過執委員會第725/2011號規則(Commission Regulation(EU)No 725/2011,以下簡稱執委會規則),就汽車製造商對CO2減排所為之生態創新(eco-innovation)科技之評鑑、核准及驗證給予更明確之規範,亦提供更多誘因。   於執委會規則下所認定之生態創新,係指就車輛本質之運輸功能及整體能源消耗有重大改善,且該創新技術(特別是在動力技術方面)於市場上屬未廣泛應用者。此外之附帶目的或旨在提升駕駛或乘客乘坐舒適度之技術,則不在其認定之範圍內(如胎壓監測系統、輪胎轉動阻力、排檔指示、使用生質燃料等,皆不得認定為生態創新)。   汽車製造商及供應商皆得提交申請書,該申請書應有足以證明其符合各項標準之必要證據,包括測定該項創新科技對CO2減排之方法。在證明其CO2減排之成效方面,應就相同車輛使用該技術與否進行比較且其測試方法應屬可供驗證、可得重覆且可資比較者。執委會規則要求CO2減排成效最低應達1gCO2/km。關於驗證,執委會規則要求由獨立驗證機構為之。驗證單位被要求於驗證報告中提供相關證據以證明其與申請者間之獨立關係,以確保其獨立性。歐盟執委會本身亦得於有證據顯示實際驗證之減排量與經認可之生態創新技術之減排量不符之情況下,再次驗證個別車輛之總減排量,但其應提供製造商一定期間以證明認可之價值屬正確者。   早在2007年歐盟所提議之立法中,即對於小客車設定了排放效能之標準,該項立法亦於2009被歐洲議會及歐盟理事會所採納,可謂歐盟試圖改善汽車燃料之經濟性及確保歐盟小客車之平均CO2排放不超過130 gCO2/km之基石。實則於今年(2011)初,歐盟執委會亦設下於2050年前,減少導致地球暖化之交通排放氣體達1990年之60%之計畫。至於上述執委會規則中所取得之碳權,皆將納入歐盟碳排放交易計畫中,新綠色科技最高可抵7gCO2/km之排放,預計將就新車平均排放量於2015年前達到130gCO2/km之目標,執委會規則也預計於同年進行檢視,其實際運作情形及後續發展皆值得予以觀察。

日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

可專利性(Patentability)與專利適格(Patent-Eligibility)有何不同?

  可專利性(Patentability)與專利適格(Patent-Eligibility)常被混用,但實際上兩者並不可以畫上等號。   具專利適格不等於可專利一事,在指標判例In re Bilski可窺知端倪:「新穎性(Novelty)、進步性(Non-obviousness,或稱非顯而易見性)的分析,和35 U.S.C. §101(專利適格的法源)無關,而是分別以35 U.S.C. §102、35 U.S.C. §103作為法源。」顯示專利適格、實用性(Utility,或稱「產業利用性」)、新穎性、進步性,互不隸屬。梳理美國專利法教課書(Casebook)和判決內容,可知:「專利適格」是取得專利的基礎門檻、資格,具專利適格,並不必然可專利,還須符合實用性、新穎性、可進步性,才是一個「可專利」的發明。另應強調,「專利適格」除了需要滿足§101法條文字外,還需要滿足美國專利與商標局(USPTO)的兩階段標準(Two-Step Test)審查。   綜上,可整理出這個公式: 可專利性=專利適格(§101+兩階段標準)+實用性(§101)+新穎性(§102)+進步性(§103)   觀察美國專利法教科書的編排方式,亦可了解思考脈絡:先介紹專利適格,再依序介紹實用性、新穎性、進步性。另,「實用性」在作為名詞時是採“Utility”一字,而非“Usefulness”,這兩個詞微妙的差異是前者具「有價值的(Beneficial)」之意涵,也呼應Justice Story在 Bedford v. Hunt對「實用」(Useful)經常被援引的解釋:「要能在社會中做出有價值的(Beneficial)應用,不可以是對道德、健康、社會秩序有害(Injurious)的發明,也不可以是瑣碎(Frivolous)或不重要的(Insignificant)。」

加拿大競爭局發布人工智慧與競爭諮詢報告

加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。

TOP