日本《科學技術指標》

  日本《科學技術指標》為文部科學省直接管轄之國立實驗研究機關「科學技術與學術政策研究所(NISTEP)」於每年度發布,主要為讓閱讀者基於客觀而定量的數據,體系性地掌握日本國內科學技術活動的基礎資料,將科學技術活動區分為「研究開發費」、「研究開發人才」、「高等教育與科技人才」、「研究開發產出」、以及「科技與創新」等5個類別,同時制定約180個指標以表達日本國內狀況。本年度公布的《科學技術指標2019》,則新增了「日本與美國各部門擁有博士學位者」、「各產業研究人才集中度與高端研究人才活用程度間之關係」、「主要國家取得博士學位之人數的變動狀況」、「運動科學研究類論文動向」、「主要國家貿易額度的變動狀況」、「各國與各類型獨角獸企業數」等20個指標。

  依《科學技術指標2019》分析,日本的研究開發費與研究者人數於日、美、俄、法、英、中、韓等七個國家中皆位居第三,論文數則為世界排名第四,受高度矚目的論文數世界排名第九,專利家族(Patent Family)數世界排名第一而與去年相同。就產業的部份,研究者中擁有博士學位者之比例依據產業類型的不同而有所差異,與美國相較,高階人才之實際就業情況未能充分發揮其所學。另一方面,就每一百萬人中有取得博士學位的人數,在各主要國家當中,僅有日本呈現減少的趨勢。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本《科學技術指標》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8364&no=67&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
用數字解讀國內企業的智財管理能量

歐盟將投入五千萬歐元投入5G研究

  行動寬頻使用人數已達1.2億,且估計每年將成長數億人口,許多研究估計2020年行動流量將比現在增加33倍。為了奪回全球手機領導者地位,歐盟不僅從2007年開始,投入超過三千五百萬歐元發展4G與4G以上的無線技術,歐盟執行委員會副主席Neelie Kroes於今年更宣佈將投入五千萬歐元研究5G通信(2013年~2020年)。   在現有的第七框架研究與發展計畫(Seventh Framework Programmefor research and development )中,歐盟已有8項關於5G的研究計畫。其中,以易利信(Ericsson)所主導的METIS(Mobile and wireless communications Enablers for Twenty-twenty Information Society),備受各界矚目。METIS的研究團隊來自共10個國家,涵蓋領域包括電信營運商、製造商、學術機構與商用軟體業者。METIS將進行網路拓樸(Network Topologies)、無線連結(Radio Links)與頻譜使用研究、以為歐洲建立一個5G的行動與無線通信系統。   目前,METIS對於未來整體目標是希望達到:   1.行動寬頻流量每單位面積能比現在高出1000倍,使網路營運商能同時服務更多消費者。   2.聯網設備比現在多出10倍至100倍。   3.行動寬頻使用速度將比現在高出10倍至100倍,觀看視頻將更為容易。   4.機器對機器通訊(Machine-to-Machine-Communications)的電池使用時間將多出10倍。   5.網路延遲的時間將會降低5倍。   雖然,5G發展僅為初期,而各歐盟會員也僅英國投入三千五百萬英鎊,但是,部分輿論從英國4G不斷延遲的例子,認為現在發展至少降低5G重蹈覆轍的可能性。

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP