醫療物聯網(The Internet of Medical Things, IoMT)

  醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。

  就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。

  由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 醫療物聯網(The Internet of Medical Things, IoMT) , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8366&no=64&tp=1 (最後瀏覽日:2025/09/18)
引註此篇文章
你可能還會想看
德國公布最新DiGA指引,針對「系統數據分析」作補充說明

德國聯邦藥品暨醫療器材管理署(Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)於2022年3月18日發布3.1版《數位健康應用程式指引》(Digitale Gesundheitsanwendungen(DiGA) Leitfaden),主要針對3.0版未詳盡之「系統數據分析」(Systematische Datenauswertung)部分作補充說明(參考資料四,頁152以下)。 德國於2019年12月即透過《數位化創新醫療服務法》(Digitale-Versorgung-Gesetz, DVG)修訂《社會法典》第五編(Sozialgesetzbuch Fünftes Buch, SGB V)關於法定健康保險之規定,賦予數位療法(Digital Therapeutics, DTx)納保給付的法律基礎,BfArM並透過《數位健康應用程式管理辦法》(Digitale Gesundheitsanwendungen-Verordnung – DiGAV)建構處方數位療法(Prescription Digital Therapeutics, PDT)的管理架構並發布DiGA指引,使數位療法得以快速被納入法定健康保險給付範圍。 開發商之數位健康應用程式取得歐盟醫療器材規則(Medical device regulation, MDR)CE Mark I & IIa級認證之後,得向BfArM提交申請,若該應用程式「符合法規要求」(Anforderungen),並具有「積極醫療效果」(Positive Versorgunseffekte),則該應用程式最快可以在三個月取得永久許可,通過許可將被列入DiGA目錄(DiGA-Verzeichnis)當中;而若僅「符合法規要求」則會被暫時收錄,需在十二個月內補上「積極醫療效果」的證據或報告,以取得永久許可,否則會從DiGA目錄中刪除。DiGA目錄中的應用程式(包含臨時許可)會納入單一支付標準(Einheitlicher Bewertungsmaßstab, EBM),法定健康保險將依該標準表列之金額給付給製造商。 目前DiGA目錄上共有36款應用程式,當中13款取得永久許可、19款取得臨時許可、另有4款被刪除;三分之一的應用程式係用於治療焦慮或憂鬱等精神疾病,其他尚包括治療耳鳴或肥胖症等疾病。病患近用DiGA目錄中之應用程式的途徑有二:透過醫師開立處方,或是依照醫師診斷之病症自行在DiGA目錄中查找對應的應用程式後提交處方申請。法定健康保險將會依照該應用程式被使用之次數,對照EBM所列之價額後,給付費用予開發商。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

美國民權辦公室發布遠距醫療隱私和資訊安全保護相關建議

美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)民權辦公室(Office for Civil Rights, OCR)於2023年10月18日發布了兩份文件,針對遠距醫療情境下的隱私和資訊安全保護,分別給予病人及健康照護服務提供者(下稱提供者)實務運作之建議。本文主要將發布文件中針對提供者的部分綜合整理如下: 1.於開始進行遠距醫療前,提供者應向病人解釋什麼是遠距醫療及過程中所使用的通訊技術。讓病人可瞭解遠距醫療服務實際運作方式,若使用遠距醫療服務,其無須親自前往醫療院所就診(如可以透過語音通話或視訊會議預約看診、以遠端監測儀器追蹤生命徵象等)。 2.提供者應向病人說明遠距醫療隱私和安全保護受到重視的原因。並且向病人告知為避免遭遇個資事故,提供者對於通訊技術採取了哪些隱私和安全保護措施,加以保護其健康資訊(如診療記錄、預約期間所共享資訊等)。 3.提供者應向病人解釋使用通訊技術對健康資訊帶來的風險,以及可以採取哪些方法降低風險。使病人考慮安裝防毒軟體等相關方案,以防範病毒和其他惡意軟體入侵;另網路犯罪者常利用有漏洞之軟體入侵病人裝置,竊取健康資訊,因此可於軟體有最新版本時,盡快更新補強漏洞降低風險;若非於私人場所預約看診,病人則可透過調整裝置或使用即時聊天功能,避免預約資訊洩漏。 4.提供者應協助病人保護健康資訊。確保病人知悉提供者或通訊技術供應商聯絡資訊(如何時聯絡、以什麼方式聯絡等),使病人遭網路釣魚信件或其他方式詐騙時可以加以確認;也應鼓勵病人有疑慮時都可洽詢協助,包括如何使用通訊技術及已採取之隱私和安全保護措施等。 5.提供者應使病人了解通訊技術供應商所採取之隱私和安全保護措施。告知病人通訊技術供應商名稱、採取之隱私和安全保護措施,及如何得知前開措施內容;使病人了解進行遠距醫療時是否使用線上追蹤技術。 6.提供者應告知病人擁有提出隱私投訴的權益。若病人認為自身健康隱私權受到侵犯,得透過OCR網站進行投訴。

美國聯邦上訴法院維持地方法院之原判,判定暢銷藥物Plavix 所基於的關鍵專利為有效

  繼美國紐約南區地方法院於2007年6月判定暢銷藥物Plavix所基於的專利為有效後,美國聯邦上訴法院於2008年12月再次認定Plavix之專利為有效。此判決有助於阻止Plavix學名藥進入美國市場直至該專利於2011年到期。   Plavix為一降低血液黏稠度之藥物,乃Bristol-Myers Squibb Co. 公司最銷售之產品及Sanofi-Aventis公司第二銷售之產品。加拿大Apotex公司宣稱Plavix之專利為無效,於2006年開始在美國販售Plavix 之學名藥。Bristol-Myers Squibb 與Sanofi-Aventis於贏得訴訟後表示將要求Apotex Inc.支付於販售學名藥期間對兩家藥商所造成的損失。   澳美國聯邦上訴法院法官表示地方法院已徹底的討論Apotex 所提出的專利無效論點,否決Apotex所提出的該專利並未包含新發明及Sanofi-Aventis之科學家使用已知研究方法及已知化合物製成Plavix 之主要組成物。上訴法院法官表示於判斷非顯而易見上,使用「後見之明」(hindsight)是不適合的。   針對此判決,Apotex公司表示他們認為上訴法院之決定為錯誤的並將持續努力尋求於美國銷售有品質的且一般大眾負擔得起的Plavix 學名藥。

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

TOP