醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。
就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。
由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。
本文為「經濟部產業技術司科技專案成果」
針對Google 於去年11月被美國東北大學(Northeastern University)向德州東區聯邦法院馬歇爾分院 (the US District Court for the Eastern District of Texas in Marshall) 所提出之專利侵權訴訟案,指控Google的核心網絡搜索系統所使用的搜索技術涉嫌侵害東北大學所擁有的專利, Google 於日前指稱該訴訟無任何法律依據, 指出其搜索核心技術是由Google自行研發並主張東北大學的專利為無效之專利且即使東北大學的專利為有效,因原告於發現其所稱被告可能侵權之事實後,從未告知Google並已拖延太久時間(約兩年半)才提出訴訟,原告已喪失請求賠償的權利。Google請求法院駁回原告之訴,並宣告原告的專利為無效。如上述請求不被法院接受,Google 則請求陪審團審判 (由此可看出Google 不怕輸的決心)。 此案的原告為美國東北大學和Jarg公司。Kenneth Baclawski (前東北大學教授及Jarg公司創始人) 於1997年取得了編號為5,694,593之搜索技術相關的專利, 比Google公司的成立早了一年。原告訴請法院除去被告之侵害、並請求損害賠償及支付訴訟費用等。 對於Google的回應,Michael Belanger, Jarg公司的另一名創始人兼總裁Michael Belanger表示,由於全案已進入訴訟程序,不便加以評論。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).
何謂「商標名稱通用化」?商標具有表彰商品來源之功能,其設計為配合商品特色而具有識別性。商標註冊後,若不具有識別及表彰商品來源之特徵,而失去商標應有之基本功能,依據商標法第63條第4款,不具識別性之商標,無法主張商標專用之權利。商標名稱通用化,即是指原本具有識別性之商標,通常為著名商標,因為社會大眾消費習慣以及認知的改變,變成商品的通用名稱,此時即認該商標失去識別性,失去法律保護。 商標名稱通用化形成之原因不一,可能是企業經營者設計商標時,有意使用社會大眾熟悉之名稱作為商標,也有可能非商標權利人自己故意造成,特別是著名商標,容易流於通用化。例如,「可樂(cola)」一詞由可口可樂(coca cola)公司率先註冊使用,但於消費者心目中已成為特定碳酸飲料之名稱,則不得由可口可樂公司獨占使用;又如火柴盒玩具汽車,為火柴盒大小包裝之玩具,企業經營者以 matchbox 作為該玩具的文字商標,但美國聯邦最高法院認為matchbox屬於該商品之通用名稱,否認其商標權。 實務上判斷商標名稱通用化,以該商標名稱在一般消費者心目中認識的主要意義為標準。一個經過市場行銷之註冊商標名稱,若在消費者心目中屬於商品通用名稱,而非特定商品來源,則表示該商標名稱已不具備商標功能,不受法律保護。
歐洲網路暨資訊安全局發布「重要資訊基礎設施下智慧聯網之安全基準建議」歐洲網路暨資訊安全局(European Union Agency for Network and Information Security, ENISA)於2017年11月20號發布了「重要資訊基礎設施下智慧聯網之安全基準建議」。該建議之主要目的乃為歐洲奠定物聯網安全基礎,並作為後續發展相關方案與措施之基準點。 由於廣泛應用於各個領域,智慧聯網設備所可能造成之威脅非常的廣泛且複雜。因此,了解該採取與落實何種措施以防範IOT系統所面臨之網路風險非常重要。ENISA運用其於各領域之研究成果,以橫向之方式確立不同垂直智慧聯網運用領域之特點與共通背景,並提出以下可以廣泛運用之智慧聯網安全措施與實作: (一) 資訊系統安全治理與風險管理 包含了與資訊系統風險分析、相關政策、認證、指標與稽核以及人力資源相關之安全措施。 (二) 生態系管理 包含生態系繪製以及各生態系的關聯。 (三) IT安全建築 包含系統配置、資產管理、系統隔離、流量過濾與密碼學等資安措施。 (四) IT安全管理 帳戶管理與資訊系統管理之相關安全措施。 (五) 身分與存取管理 有關身分確認、授權以及存取權限之安全措施。 (六) IT安全維護 有關IT安全維護程序以及遠端存取之安全措施。 (七) 偵測 包含探測、紀錄日誌以及其間之關聯與分析之安全措施。 (八) 電腦安全事件管理 資訊系統安全事件分析與回應、報告之資安措施。