醫療物聯網(The Internet of Medical Things, IoMT)

  醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。

  就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。

  由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 醫療物聯網(The Internet of Medical Things, IoMT) , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8366&no=64&tp=5 (最後瀏覽日:2025/08/18)
引註此篇文章
你可能還會想看
Ofcom對市內用戶迴路接取批發市場發布管制措施並徵求各界意見

  固定通信網路(以下稱固網)寬頻、電話服務通常倚賴市內電話交換機(local telephony exchange)與住宅或商辦間的固網連接才得以運作,而在多數區域,這樣的連接服務僅由一或兩個實體網路業者所提供。有鑑於此,英國通訊管理局(The Office of Communications,Ofcom)遂對市內用戶迴路接取批發(wholesale local access, WLA)市場的規範發布三份諮詢文件,其目的除希望能促進光纖網路的投資外,也要保障消費者免於支付高額的使用費。   為了達成這樣的願景,Ofcom要求英國電信(British Telecom, BT)旗下提供WLA服務之子公司Openreach需允許寬頻競爭業者得以使用其網路銷售寬頻服務予人民或企業。Openreach提供數種傳輸速率的服務方案,並依不同方案對服務提供者收取不同的批發價格。根據Ofcom的分析結果,Openreach在高速寬頻服務(superfast broadband service)各項方案中,最具影響力的即為提供下載速率40Mbps/上傳速率10Mbps之服務方案。截至目前為止,受限於人民可選擇較便宜的寬頻服務當作替代方案,故BT對於服務方案價格的調漲有限。然而,這樣的限制隨著人們對網速的需求與連線品質的日益增加而日趨式微,Openreach顯然有足夠的誘因對服務方案的價格進行操作。因此,Ofcom責成Openreach需就其40/10Mbps之服務方案逐年調降向服務提供者收取之費用,由2017年的每年88.80英鎊至2020/21年降為每年52.77英鎊。藉由對服務提供者營運成本的逐年遞減,達到消費者服務使用費也隨之降低的目的;對40/10Mbps方案設下價格上限(price cap)的做法,長遠來看,也提供BT的競爭對手有投資建設其自有超高速網路(ultrafast network)的誘因。   此外,Ofcom對於WLA連線過程中,屬於Openreach維護範圍之故障排除或線路建置時間等服務品質(quality of service)的要求也更趨嚴格,包括: 於收到通知後1至2個工作天內完成93%的報修(現為80%); 6至7個工作天內完成97%的報修; 於收到新線路建置通知後10個工作天內安排90%的新線路建置預約(現為12個工作天內安排80%的新線路建置預約); 於Openreach與電信供應商協議之日期前完成95%的連線建置(現為90%)。以上要求皆需於2020/21年完全實現。   Ofcom這些管制措施是WLA market諮詢文件的一部份,確切施行期間為2018年4月至2021年3月,意見諮詢預計於2017年6月9日結束。Ofcom預計於2018年初發表其最終決定,而定調後的規範將於2018年4月生效。

美國白宮發布「美國就業計畫」說明文件,加強投資基礎建設與科技研發

  美國白宮於2021年3月31日發布「美國就業計畫」說明文件(FACT SHEET: The American Jobs Plan),針對美國當前所面臨基礎建設老舊、失業率攀升、氣候變遷與來自中國的技術競爭等問題,預計在未來八年內每年投資約GDP的1%,共投入約2兆美元(約合新台幣56兆元)於修復與升級國家基礎建設、振興製造業、投資基礎科學研究、支持供應鏈、推動能源轉型、幼兒教育及長照醫療等項目上。   本說明文件指出,雖然美國為世界上最富裕的國家,但許多基礎建設都逐漸變得老舊或不合時宜,部份人民仍無法享有高速網路與價格可負擔的房屋,而在疫情的衝擊下不僅導致工作機會喪失,更威脅到國家經濟安全。除此之外,美國在科技研發、製造與人才培育上開始落後於最大的競爭對手,顯示政府有必要加快在基礎建設與科技研發的投資,以重建美國的國家競爭力並創造更多的就業機會。   針對投資基礎建設部分,包含交通基礎建設如修復高速公路、橋樑,並升級港口、機場及運輸系統,並改善飲水、電力與網路布建,提供全體人民可負擔、可靠的高速寬頻服務;除了提高基礎建設在面對氣候變遷危機時的韌性,也提供美國人民更安全、可靠、便利的生活條件。在更新基礎建設的同時,將採用符合永續性及創新性的建築材料,並優先使用在美國製造與販售的零組件,以支持國內產業與創造就業機會。   而在投資科技研發部分,相對於中國大陸正大力投資於研發,其研發支出為世界第二,美國在投資科技研發占GDP比率卻持續下降,為了支持研發團隊克服高度創新(high-innovation)技術的障礙,有必要提高對於國內研究人員、實驗室及大學院校的投資。因此白宮呼籲國會支持國家科學基金會(NSF)投資500億美元設立技術局(technology directorate),用於整合國家研究資源,投入半導體及高級通訊技術、高級能源技術及生物技術的研發,並預計投資400億美元於全國實驗室研究設施與網路的升級。   除此之外,白宮規劃投資350億美元於研發克服氣候變遷危機的技術解決方案,包括開發減少排放和建立氣候適應力的新方法,並呼籲國會投資100億美元於傳統黑人大學(HBCUs)、弱勢族群教育機構(MSIs)的科技研發以避免種族與性別落差,投資200億美元於區域創新中心及社區再生基金,向國家標準技術協會(NIST)投資140億美元推動產官學合作研發,以及規劃310億美元用於中小企業信貸、創投及研發資金,特別是地區型的小型孵化器及創新聚落,以支持有色人種及弱勢族群的新創事業成長。

德國Brüstle vs. Greenpeace案於歐盟再掀人類胚胎幹細胞研究爭議

  歐盟1998年生物科技發明法律保護指令(Directive on the legal protection of biotechnological inventions,98/44/EC)第6條(2)(c)雖規定「將人類胚胎作產業或商業用途之使用不具備可專利性」,但並未定義何謂「人類胚胎」及「產業或商業用途使用」,因此德國聯邦最高法院於2009年審理Brüstle vs. Greenpeace一案時,遂提請歐盟法院就前述問題為初步裁定。   在歐盟法院提出初步裁決前,佐審官(Advocate General)M. Yves Bot已先於2011年3月10日提出其法律意見書,認定人類胚胎的概念包括從受精、發展為起始性全能幹細胞(initial totipotent cells)到形成完整人體的整個階段,凡已具備發展為完整人體的基本特質與能力者,均符合指令第6條(2)(c)所稱之胚胎,而不具有可專利性;此外,任何涉及毀損人類胚胎或以人類胚胎為基礎材料的技術亦違反公共秩序與道德,而不得授予專利。至於「產業或商業用途」,其認為係指任何基於產業或商業目的大量製造及使用人類胚胎之行為。   歐盟法院將於近日作出初步裁決,由於佐審官之意見向來對於裁決結果具有實質影響力,故該意見書已引發各界高度關注與討論;雖然德國聯邦最高法院未必會依循裁決結果進行判決,但該裁決內容已涉及人類胚胎幹細胞研究的核心-胚胎定義與研究成果的可專利性問題,因此未來將對各國幹細胞研究的立法政策走向造成何種影響,值得密切觀察。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP