Sandoz藥廠和Momenta藥廠將支付1.2億美金和解反托拉斯訴訟

  諾華(Novartis)旗下學名藥廠山德士(Sandoz)和美國學名藥廠Momenta,同意支付1.2億美金,使涉及其暢銷救命藥Enoxaparin之反托拉斯集體訴訟達成和解。本案原告為非營利醫院Nashville綜合醫院和紐約州公務員工會醫療計畫組織DC 37,於2014年美國田納西中區聯邦地方法院起訴。根據訴訟文件提到,Enoxaparin原是訴外人賽諾菲(Sanofi-Aventis)以Lovenox為品牌名販售的抗凝血劑,用於預防和治療深部靜脈血栓、肺栓塞及急性冠心症等症狀,2010年Momenta證明其學名藥Enoxaparin和Lovenox具相同療效,申請簡易新藥上市(Abbreviated New Drug Application,ANDA)獲准。

  原告指稱2008年Momenta欺瞞美國藥典委員會(United States Pharmacopeial Convention,USP),使其開發之Enoxaparin檢測方法,成為美國食品藥品監督管理局(U.S. Food and Drug Administration,FDA)指定的檢測方法之一,但在此過程中未向藥典委員會揭露自己正為該檢測方法申請專利。隔年Momenta之檢測方法取得專利(No.7,575,886),因該檢測方法無法迴避,故其它欲生產Enoxaparin的學名藥廠皆可能侵害該專利,而難以進入市場。又Momenta和山德士早在2003年就簽有合作協議,Momenta將該專利授權給山德士,共同創造一個壟斷的學名藥市場,以抬高售價賺取暴利。

  未來和解金將用於賠償醫院、保險公司、為員工支付醫療費用的公司,及田納西州其它29區受山德士和Momenta反競爭行為影響的人們。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ Sandoz藥廠和Momenta藥廠將支付1.2億美金和解反托拉斯訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8383&no=67&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
個人資料保護脈絡下的「綑綁式同意」

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

英國禁止限制級(R18級)情色影片以網路方式行銷

  為貫徹對未成年人的保護,避免未成年人以網路方式購買 R18 級情色影片,英國政府規定該類影片只能於獲有執照之供應商店販售,並僅有實際到店的顧客方得購買,禁止以郵購、網路或電話方式行銷,引發業者反彈,其中兩家公司遭受罰鍰處分後提起訴訟,日前上訴英國高等法院 (High Court) 主張此項限制對英國境內業者並不公平,境外業者可以規避此限制而仍於網路上販售 R18 級影片,將嚴重影響英國境內業者的發展。   該法院於五月二十三日作出決定認為此項限制為合法,蓋因網路購物難以確認購買者的年齡,強制規定必須到店購買將有助於確認購買者是否已達法定年齡,降低未成年人購得 R18 級影片的可能性。

TOP