日本內閣為實現「Super City」的構想,於2020年2月4日通過《國家戰略特別區域法》部分條文修正案並提交國會審議,擬透過自駕車、無人機物流、遠距醫療等結合社區總體營造,以因應高齡化社會和解決人力不足等課題為目標。
「Super City」係指充分活用第四次工業革命中,人工智慧及大數據等各項最先進技術,領先實現未來生活方式的「完全的未來都市」。不僅在複數領域的智慧化措施中導入管制革新,同時也於生活中實踐,旨在解決社會中的各項課題。「Super City」可說是較早推動的「Smart City」進化版。Smart City具體推動範圍侷限於能源、交通等個別領域的尖端技術實證,而Super City則是以未來都市的整體創建為目標。即Super City的推動至少會同時涵蓋5個領域以上的生活中各項智慧科技,如物流、支付、行政、醫護、教育、環境、防災等;不僅有技術上的實證,更看重先行於未來社會的生活中實現;最重要的是會從居民的角度,而非從技術開發端、供給端,來追求理想的未來社會。
不過現行法規對於Super City的實現是有所侷限的,目前日本雖可依《國家戰略特別區域法》,由國家指定特定地區並實施管制鬆綁、制度改革等特例措施,但在推動管制革新以執行各種近未來技術之實證方面,尚需個別與相關主管機關協商,因此經常耗費數月至數年的時間成本。本次修法將強化各相關主管機關的合作,將制定基本方針明定具體的合作程序,而城市間的合作強化則將會整備開放API(Open Application Programming. Interface)規則及法規;另外Super City的實現需要蒐集、整理各領域之資料,因此擬將「資料協作基盤整備事業」列為法定計畫,且事業實施主體可要求國家及地方政府提供其所擁有的資料;由於Super City的推動將會同時涵蓋多個不同領域,為使各領域的管制革新具整體性且能同時實現,修正案中也規範Super City事業計畫的認定程序。
本文為「經濟部產業技術司科技專案成果」
澳洲政府規定進行交易必須繳納 10% 的商品及服務稅 (Goods and Services Tax) ,透過澳洲 eBay 所進行的交易亦然。然而澳洲 eBay 業者並未修改其服務條款,強制賣方明列成功得標價須課徵 10% 稅款之資訊,因此許多得標者抱怨他們未被告知必須多付 10% 的稅,亦有些賣家抱怨其他賣家因未將價格加上 10% 的稅款,所以造成商品價格較便宜的假象。為杜絕前述問題,澳洲 eBay 已修改其服務條款,因此,自 6 月 13 日起澳洲 eBay 賣家須將 10% 的商品及服務稅納入交易金額或立即購買價 (Buy It Now price) 中。
加州針對18歲以下兒童通過兒童隱私保護法加州州長Gavin Newsom 早先簽署了《加利福尼亞州適齡設計法》(California Age-Appropriate Design Code Act AB 2273,以下簡稱該法),2023年4月28日,倡議團體與聯邦政府官員提交一份意見陳述以支持該法,預計於2024年7月1日生效;針對提供線上服務、產品給18歲以下加州兒童的企業進行管制。 該法的適用範圍: 1. 倘若企業提供的線上服務、產品或功能符合以下條件,則受該法所規範: (1) 提供服務的對象為兒童(年齡於13歲以下的孩童)之網路服務商。 (2) 所提供之服務包括兒童經常瀏覽的網站,或者確定是廣泛被兒童使用的線上服務、產品或功能。 2. CPRA(California Privacy Rights Act)所規範之「企業」,是位於加州並蒐集加州居民個人資料的營利性組織,其須滿足以下條件之一: (1) 年度總收入超過 25,000,00美元,或是每年單獨或聯合購買、出售或共享100,000名以上加州居民或家庭的個人資料,或者年收入的50%以上來自出售或共享加州居民的個人資料。 (2) 該法不適用於網路寬頻服務、電信服務或實體買賣行為。 一. 規範內容 1. 資料保護影響評估:企業針對所營事業須完成資料保護評估,且必須每兩年自主進行資料安全確認。 2. 最高級別隱私權設置:企業對於兒童使用者,須預設最高等級之隱私權設置及保護。 3. 隱私政策和條款:企業必須簡明的提供隱私政策、服務條款和明確標準,並使用與兒童年齡相符的清晰語言,以便兒童理解語意。 (1) 將兒童依據年紀分為:0至5歲為「早期識字階段」、6至9歲為「核心小學階段」、10至12歲為「過渡階段」、13歲以上為「早期成年階段」。 (2) 定位服務:要求企業在兒童的活動或位置受到父母、監護人或其他消費者的監控或追蹤時,向兒童明確提醒。 該法針對兒童制定嚴謹的法規予以保護,確保兒童個人資料不會在沒有認知的情況下,因使用服務而被蒐集、處理及利用。該法特殊的地方為,對於未成年人進一步區分不同年齡段,若有明確區分出並針對各年齡段進行不同的告知事項設計,將更易使閱讀之未成年人明確了解個資告知內容,應值贊同。
歐盟傳統作物與基因改造農作物之共存門檻制度受到歐洲法院的挑戰歐洲法院(European Court of Justice)於2011年9月6日作出一項指標性的判決,係針對蜂蜜或食物補充品(Food Supplement)中,若其花粉成分受到基因改造作物之污染,則無論該污染是有意或無意所造成者,未經審核前均不得任意販售。據此,蜂蜜或食物補充品的生產者得就因不得販售所產生之損失向污染源或政府求償。 該案原為德國的養蜂人認為其生產之蜂蜜中的花粉受到鄰近距離五百公尺的基因改造農作物試驗之污染,而該試驗即為巴伐利亞政府所核准之基因改造農作物試驗(1998年EU核准的MON 801 maize),故而對巴伐利亞政府提出求償。原德國法院在不能確定蜂蜜是否涵蓋在基因改造規範的情況下,轉而尋求歐洲法院的判決。 該判決等於是挑戰歐盟現有的對於傳統作物及基因改造作物共存的政策與法規(GMO, Co-Existence),歐盟就該共存的門檻標準設定在0.9%,若產品含基因改造成分0.9%以上,需標示為基因改造產品,惟標示為基因改造食品對於傳統農作物之種植可能帶來銷售上的不利。而在共存門檻之下,含有基因改造成分的傳統農作物還是有可能因含有基因改造的成分而影響銷售並帶來損失;又因在共存門檻之下,作物含有基因改造成分是無法向政府或是來源求償的。另一方面,該判決亦影響出口蜂蜜至歐盟的國家,如大量生產蜂蜜且核准種植基因改造作物的阿根廷等國家。 對於基因改造食品採取保守態度的歐盟,近年來有意將是否禁止基因改造農作物以及共存門檻的比率下放給成員國自行決定,在成員國間形成兩極化的意見,而該項提案目前雖已經歐盟議會背書,但尚未由各成員國通過。這樣的判決令共存門檻的制度形同具文,且可能會使更多國家傾向禁止種植基因改造農作物,而不利於基因改造科技的研發。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。