日本內閣為實現「Super City」的構想,於2020年2月4日通過《國家戰略特別區域法》部分條文修正案並提交國會審議,擬透過自駕車、無人機物流、遠距醫療等結合社區總體營造,以因應高齡化社會和解決人力不足等課題為目標。
「Super City」係指充分活用第四次工業革命中,人工智慧及大數據等各項最先進技術,領先實現未來生活方式的「完全的未來都市」。不僅在複數領域的智慧化措施中導入管制革新,同時也於生活中實踐,旨在解決社會中的各項課題。「Super City」可說是較早推動的「Smart City」進化版。Smart City具體推動範圍侷限於能源、交通等個別領域的尖端技術實證,而Super City則是以未來都市的整體創建為目標。即Super City的推動至少會同時涵蓋5個領域以上的生活中各項智慧科技,如物流、支付、行政、醫護、教育、環境、防災等;不僅有技術上的實證,更看重先行於未來社會的生活中實現;最重要的是會從居民的角度,而非從技術開發端、供給端,來追求理想的未來社會。
不過現行法規對於Super City的實現是有所侷限的,目前日本雖可依《國家戰略特別區域法》,由國家指定特定地區並實施管制鬆綁、制度改革等特例措施,但在推動管制革新以執行各種近未來技術之實證方面,尚需個別與相關主管機關協商,因此經常耗費數月至數年的時間成本。本次修法將強化各相關主管機關的合作,將制定基本方針明定具體的合作程序,而城市間的合作強化則將會整備開放API(Open Application Programming. Interface)規則及法規;另外Super City的實現需要蒐集、整理各領域之資料,因此擬將「資料協作基盤整備事業」列為法定計畫,且事業實施主體可要求國家及地方政府提供其所擁有的資料;由於Super City的推動將會同時涵蓋多個不同領域,為使各領域的管制革新具整體性且能同時實現,修正案中也規範Super City事業計畫的認定程序。
本文為「經濟部產業技術司科技專案成果」
英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
日本首相頒布「2017智慧財產推動計畫」,揭示國家推動三大基礎政策面向日本首相安倍晉三於2017年5月16日在官邸舉行智慧財產戰略本部(知的財産戦略本部)會議,並正式頒布「2017智慧財產推動計畫(知的財産推進計画2017)」。為因應大數據(ビッグデータ)、人工智慧(人工知能)等相關先進科技議題,透過調整產官學資源,培育地方中小企業智慧財產基礎認知,保護高附加價值農產品品種,振興觀光及影視等文化產業,提昇國家綜合競爭力,構築第4次產業革命(society5.0)之基礎。該會議中,所發表「2017智慧財產推動計畫」之三大基礎政策面向分別為: 一、建構第4次產業革命之智慧財產系統 (一) 充分利用、活用資訊及人工智慧以強化產業競爭力: 制訂資訊利用契約指引(ガイドライン)。 修正不正競爭防止法(資料不當取得禁止等)。 著作權法之修正(對於權利柔軟性限制之規定)。 AI學習模型(AI学習済モデル)專利。 (二)智慧財產系統基礎之準備: 強化證據蒐集程序。 創設ADR制度(Alternative Dispute Resolution、日文:標準必須特許裁定)。 (三)推動引領全球之智慧財產制度及相關標準化: 推動全面化的智慧財產管理制度(賦予智慧財產權之資料及標準等)。 活用國立研究開發法人之標準及其人才之培育。 二、活用智慧財產之潛力,推動區域活絡與發展 (一)積極活用強化農林漁業、食品業等智慧財產: 充實地理標示(GI)或植物品種,於國內外之保護及輔導體系。 制訂國家農林漁業優勢的標準(JAS)。 推動活用資訊之智慧農業。 (二)活用地方中小企業智慧財產,並推廣產學及產業間之互助: 啟發中小企業智慧財產意識,支援智慧財產海外之推廣。 產學攜手之橋接,並支援事業化。 (三)每一位國民都是智慧財產人才,推動智財教育: 充實智慧財產教育之新指導要領。 智慧財產教育振興聯盟課程與教材之開發。 建立地方性聯盟。 三、2020年大放異彩之日本 (一)海外推廣和產業基地之加強: 「酷JAPON官民共同營造平台」、「地方版酷JAP」之基礎建設及相互合作。 人才之育成、教育機構的合作。 (二)振興電影產業: 強化中小企業公司製作之支援及資金調動多樣化,及其海外之發展。 成s立公私部門改善攝影環境之聯絡會議。 (三)構築資料庫:設立跨部門之窗口,在產官學共同協助下活用研究成果、及商業化。 這個推動計畫乃是與「總合科學技術革新會議(総合科学技術・イノベーション会議)」及「IT總合戰略總部(IT総合戦略本部)」等共同合作,並結合「資訊利用促進基本計畫(官民データ活用推進基本計画)」(以「科學技術基本計畫」、「科技創新綜合戰略(科学技術イノベーション総合戦略)」、「資訊利用促進基本法(2016第103號法律)」等為基礎所發展的新計畫),在智慧財產戰略總部的主導下進行推動,積極穩健的落實智慧財產價值之保護、智財潛力活用及地方革新推動、日本文化之集結及向世界傳達日本的新文化價值等三大目標,以達到國家的發展戰略中,智慧財產戰略政策之最大使命。
新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動加拿大隱私專員於2016年6月14日表示,制定支持全球電信監管機構和消費者保護機構,針對垃圾郵件和行銷騷擾電話之跨境共同合作協議。 倫敦行動計畫(London Action Plan)備忘錄(MOU)之簽署國,現已可針對打擊跨國界或逾各個國家監管部門範圍之犯罪從事者的執法行動,相互分享資訊和情報,以獲取協助。 包括加拿大隱私專員辦公室(OPC)在內,目前既已簽署方分別為:澳大利亞通訊及傳媒管理局;加拿大廣播電視和電信委員會、韓國訊息安全局(KISA)、荷蘭消費者和市場監管局(ACM)、英國資訊委員辦公室及公民諮詢局、紐西蘭內政部、南非國家消費者委員會、美國聯邦貿易委員會和聯邦通訊傳播委員會。其他國家之政府當局亦表示願提交備忘錄,以及將來可能加入之意願。 對於加拿大隱私專員辦公室而言,這項協議將有助於達成加拿大反垃圾郵件法(CASL)關於電子郵件地址蒐集和間諜軟體之調查義務與責任,並與具有相同任務之夥伴機構間,進行偵查技巧及策略之分享。 加拿大隱私專員辦公室致力於和國內及國際夥伴合作,並已與國內之CASL執法合作夥伴及其他許多國家的隱私保護機構簽訂協議。
新加坡金融管理局發布《資料治理與管理實務》資訊文件新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。