日本公正取引委員會(下稱公取委,其性質等同於我國公平交易委員會)在2019年12月11日的定期記者會上表示,由於近年出現許多關於「智慧財產及knowhow保護不足」的聲音,因此將針對大型企業在與新創、新興企業進行共同合作或研究時,是否有濫用優勢地位不當掠取智慧財產權及專業知識技能(knowhow)的情形,啟動實況調查。
公取委將以書面方式,針對日本國內約1萬家創業10年以內的IT製造新創產業與大企業間交易之實況進行調查。相關報導整理了以下幾種常見的問題交易型態:
公取委表示,因為新興企業具有開放式創新的價值,在與大型企業進行合作時,對於國家產業發展及競爭力的提升,能發揮很大的貢獻。因此藉由實態調查,確保建構出一個自由、公平的良性競爭環境,並預計在2020年依據調查結果,擬定相關指引或方針。
歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
資通安全法律案例宣導彙編 第4輯 澳洲隱私專員主張應從嚴認定個人資料去識別化澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。 澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。 如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。 其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。 未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。
歐盟執委會發布關於歐洲境內資料流監控之新研究歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。 在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。 該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量 該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。 作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。