日本《研究資料基盤整備與國際化戰略》報告書

  日本因應各先進國家近年於開放科學概念下,政府資助研發計畫研究資料管理及開放之倡議與制度化推展趨勢,內閣府於2015年提出開放科學國際動向報告書,並在第5期科學技術基本計畫與2019年統合創新戰略中規劃推動開放科學。上述政策就研究資料管理開放議題,擬定了資料庫整備、研究資料管理運用方針或計劃之制定、掌握相關人才培育與研究資料運用現況等具體施政方針。在此背景下,內閣府於2018年設置「研究資料基盤整備與國際化工作小組(研究データ基盤整備と国際展開ワーキング・グループ)」,持續檢討日本國內研究資料管理、共享、公開、檢索之基盤系統建構與政府制度、國家研究資料戰略與資料方針、國際性層級之推動方向等議題,在2019年10月據此作成《研究資料基盤整備與國際化戰略》(研究データ基盤整備と国際展開に関する戦略)報告書,形成相關政策目標。

  本報告書所設定的政策目標採階段性推動,區分為短期目標與中長期目標。短期預計在2020年前,正式開始運用目前開發測試中之研究資料基盤雲端平台系統(NII Research Data Cloud, RDC),針對射月型研發計畫研擬並試行研究資料管理制度,建構詮釋資料(metadata)之集中檢索體系,並建立與歐洲開放科學雲(EOSC)之連結;中長期目標則規劃至2025年前,持續調適運用RDC,正式施行射月型研發計畫之研究資料管理制度,確立共享與非公開型研究資料之管理框架,蒐整管理資料運用現況之相關資訊,並逐步擴張建立與全球研究資料共享平台間之連結。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本《研究資料基盤整備與國際化戰略》報告書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8411&no=67&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
印度政府公告個人資料保護法草案

  2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。   其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。   草案全文共112條,分為15章節。主要重點架構說明如下: 設立個資保護專責機構(Data Protection Authority of India, DPAI):規範於草案第49至68條,隸屬於中央政府並由16名委員所組成之委員會性質,具有獨立調查權以及行政檢查權力。 對於敏感個人資料(Sensitive personal data)[1]之特別保護:草案在第4章與第5章兩章節,規範個人與兒童之敏感個人資料保護。其中草案第18條規定蒐集、處理與利用敏感個人資料前,必須獲得資料主體者(Data principal)之明確同意(Explicit consent)。而明確同意是指,取得資料主體者同意前,應具體且明確告知使用其敏感個人資料之目的、範圍、操作與處理方式,以及可能對資料主體者產生之影響。 明確資料主體者之權利:規範於草案第24至28條,原則上資料主體者擁有確認與近用權(Right to confirmation and access)、更正權(Right to correction)、資料可攜權(Right to data portability)及被遺忘權(Right to be forgotten)等權利。 導入隱私保護設計(Privacy by design)概念:規範於草案第29條,資料保有者(Data fiduciary)應採取措施,確保處理個人資料所用之技術符合商業認可或認證標準,從蒐集到刪除資料過程皆應透明並保護隱私,同時所有組織管理、業務執行與設備技術等設計皆是可預測,以避免對資料主體者造成損害等。 指派(Appoint)資料保護專員(Data protection officer):散見於草案第36條等,處理個人資料為主之機構、組織皆須指派資料保護專員,負責進行資料保護影響評估(Data Protection Impact Assessment, DPIA),洩漏通知以及監控資料處理等作業。 資料保存之限制(Data storage limitation):規範於草案第10條與第40條等,資料保有者只能在合理期間內保存個人資料,同時應確保個人資料只能保存於本國內,即資料在地化限制。 違反草案規定處高額罰金與刑罰:規範於草案第69條以下,資料保有者若違反相關規定,依情節會處以5億至15億盧比(INR)或是上一年度全球營業總額2%-4%罰金以及依據相關刑事法處罰。 [1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。

何謂「Spitzencluster-Wettbewerb」?

  Spitzencluster-Wettbewerb由德國聯邦教育與科學部(Bundesministerium für Bildung und Forschung,BMBF)自2007年起開始推行,屬該國高科技戰略2020(hightech-strategie 2020)之政策配套措施之一,更是歐盟發展歐洲研發區位計畫(European Research Area)之一環。所謂聚落係建立在德國傳統工業區位分布上,利用群聚效應因應產業技術發展的複雜問題(產業問題非單一技術可解決),使各具專長之學研機構與企業共同分享產業問題研議出解決方案,分擔研發風險與成本等,增強合作效率,促進產業創新及升級。聚落多以成立協會(association)為主,平均每一聚落有近70個企業參與,原則上開放跨國參與者參與聚落之產學合作,並對會員收取會費。   本計畫作為重要的區域產學研合作計畫,乃承襲自德國過去不斷推動的區域產學研合作計畫,其特色是採取競爭方式選出德國境內優秀之聚落,並補助其相關研發計畫。自2007年至2015年間,已有三次選拔,並選出共15個領先聚落,分別涉及領域橫跨航太、資通訊、能源、生技等技術發展。至2015年為止總計已補助超過1300個計畫。2015-2017年將規劃有三次選拔,每回合挑選至多10個聚落獲得補助。目前本計畫已補助3.6億歐元預算,至2017年底將再投入5億歐元預算。

Angie's List起訴Amazon Local侵害營業秘密

  消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。   該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。   Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。

歐盟執委會發布指引以因應《人工智慧法》「禁止的人工智慧行為」條文實施

歐盟執委會於2025年2月4日發布「關於禁止的人工智慧行為指引」(Commission Guidelines on Prohibited Artificial Intelligence Practices)(下稱「指引」)」,以因應歐盟《人工智慧法》(AI Act,下稱AIA)第5條關於「禁止的人工智慧行為」之規定。該規定自2月2日起正式實施,惟其內容僅臚列禁止行為而未深入闡釋其內涵,執委會特別制定本指引以避免產生歧義及混淆。 第5條明文禁止使用人工智慧系統進行有害行為,包括:利用潛意識技術或利用特定個人或群體之弱點進行有害操縱或欺騙行為、實施社會評分機制、進行個人犯罪風險預測、執行無特定目標之臉部影像蒐集、進行情緒識別分析、實施生物特徵分類、以及為執法目的而部署即時遠端生物特徵識別系統等。是以,指引就各禁止事項分別闡述其立法理由、禁止行為之具體內涵、構成要件、以及得以豁免適用之特定情形,並示例說明,具體詮釋條文規定。 此外,根據AIA規定,前述禁令僅適用於已在歐盟境內「投放市場」、「投入使用」或「使用」之人工智慧系統,惟對於「使用」一詞,並未予以明確定義。指引中特別闡明「使用」之定義,將其廣義解釋為涵蓋「系統投放市場或投入使用後,在其生命週期任何時刻的使用或部署。」 指引中亦指出,高風險AI系統的特定使用情境亦可能符合第5條的禁止要件,因而構成禁止行為,反之亦然。因此,AIA第5條宜與第6條關於高風險AI系統的規定交互參照應用。 AIA自通過後,如何進行條文內容解釋以及法律遵循義務成為各界持續討論之議題,本指引可提升AIA規範之明確性,有助於該法之落實。

TOP