2019年10月29日,德國聯邦經濟與能源部提出GAIA-X計畫(Project GAIA-X),蒐集德國聯邦政府、產業和科學界代表意見,與歐洲夥伴合作共創高性能、具競爭力、安全可信賴的歐洲聯合雲端資料基礎建設平台。GAIA-X計畫被視為歐洲開放、透明的雲端數位生態系統搖籃,用戶得以在可信任的環境中,提供整合安全的共享資料;透過雲端資料的跨國合作,為歐洲國家、企業和公民創造聯邦資訊共享環境、促進數位創新、建構全新商業模式。GAIA-X計畫將嚴格遵循資料保護、公開透明、真實性與可信賴性、數位主權(Digital Sovereignty)、自由市場與歐洲價值創造、系統模組化及互操作性(Modularity and Interoperability)、資料可用性等歐洲價值觀及原則。
GAIA-X計畫設定的目標包括:1.維護歐洲數位主權;2.減少對外國雲端供應鏈依賴;3.拓展歐洲雲端服務的國際市場;4.塑造創新數位生態系統。透過建立資料技術與數位經濟相關的基礎設施,將統一安全規格的雲端技術,落實在公共管理、衛生部門、企業和科研機構用戶與供應商間,形成開放數位資料共享的大平台。另外,GAIA-X計畫能進一步強化歐洲雲端服務供應商及歐洲商業模式的全球競爭力與規模,透過聯合雲端資料基礎建設,連接歐洲大小型企業、公部門、醫療及金融機構的伺服器,將全歐洲對於數位技術的多項投資串連在一起,積極發展AI人工智慧、智慧醫療、數位金融監管等新興產業,得以確保歐洲數位安全並提高雲端資料處理能力。
本文為「經濟部產業技術司科技專案成果」
美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。 「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。 在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。
歐洲食品安全局頒佈利益申報實施細則為了有效管理歐洲食品安全局(European Food Safety Authority, EFSA)內部各項活動間之利益管控與監督,EFSA日前於3月5日公布利益申報(Declarations of Interest, DOIs)施行規則(Implementing Rules),並計畫於2012年7月1日正式實施,且同時搭配一個為期4個月的過渡(Transition Period)配套措施方案。該利益申報施行規則,乃為EFSA於今年初所核准之「獨立性與科學決策過程」(Independence and Scientific Decision-Making Processes)政策的基礎規範項目之一。 本次EFSA所頒布之利益申報施行規則,其訂定之理由係因,原任職於EFSA旗下基因工程植物之首席風險評估專家,轉任至一家專門研發及生產該種植物之生物科技公司;為避免並且釐清相關因該事件所衍生之利益衝突問題,乃制定本規範。故此,為具體有效管理EFSA內部人員與其他涉及EFSA各項活動之機構間的利益監督事宜,EFSA遂進一步於今年初開始著手進行相關措施之規劃。目前該利益申報施行規則除了主要針對EFSA旗下之各層級人員訂定各項利益類型之規範準則外,更重要的是,其亦提供其旗下之專業科學研究人員,各項能有效具體確認其利益界線之劃分的保護措施。由於該利益申報施行規則授與EFSA選取與管理利益申報議題若干彈性,因此EFSA能具體且有效的利用相關規範延攬頂尖研究人員,進而協助EFSA提升其內部研發人員之創新研發能力。 政府機關成員之利益申報與迴避問題,乃為全球各國政府需面對之問題,而對於如何有效且彈性的進行相關議題之管控,更是相關政策制訂時需加以考量之點。EFSA之利益申報施行規則不僅有效管理內部人員之利益衝突與申報問題,同時亦藉由彈性的管理規範方式,延攬優秀頂尖人才,達到具體提升研發水準之功效;對此,EFSA之規範方式與運作成效,實值得加以觀察與效仿。
日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。 該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。 此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。 日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。