歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰

  歐盟執委會於2020年3月10日公布產業策略指導方針,名為「因應全球競爭、綠色、和數位歐洲的新產業策略」(A new industrial strategy for a globally competitive, green and digital Europe),以幫助歐洲產業在面臨近年氣候中和及數位領導變遷時,因轉型而產生的過渡期。此次公布的產業策略指導方針,包含三大主題,分別是:(1)新產業策略(A new industrial strategy)、(2)新中小型企業策略(A new SME strategy)以及(3)企業與消費者的單一市場(A single market that delivers for our businesses and consumers);而其中又以「新產業策略」為該指導方針之重點。

  為提升歐洲的產業領導地位,「新產業策略」中論以三個關鍵優先事項,分別為:維持歐洲產業的全球競爭力和公平競爭環境、2050年以前達成氣候中和(climate-neutral)目標,以及塑造歐洲未來數位化。為達成前述優先事項,歐盟執委會提出一系列未來行動:

  1. 推行智財權行動計畫(Intellectual Property Action Plan)以保護歐盟技術主權,並採行適合綠色和數位轉型的法規框架;
  2. 持續檢討修正歐盟競爭相關法令(EU competition rules),確保法規能適應快速變化的經濟環境;
  3. 為維護產業在歐盟境內外的公平競爭環境,執委會將於在2020年中以前出版白皮書,處理歐盟單一市場中因外國補貼而引起的扭曲效應,以及歐盟境內的外國採購和外國資金問題;
  4. 推行關鍵原料行動方案(Action Plan on Critical Raw Materials),確保關鍵原物料穩定供應;支持戰略數位基礎設施和關鍵技術發展,增強歐洲產業及戰略自主地位;
  5. 其它則有對綠色公共採購進一步立法、發展低碳產業和技術、支持永續型智慧交通產業等。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8447&no=67&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
從美國「聯邦風險與授權管理計畫」看我國促進政府部門導入雲端運算之策略與機制

從美國「聯邦風險與授權管理計畫」看我國促進政府部門導入雲端運算之策略與機制 科技法律研究所 2013年07月03日   資訊科技的發展,從早期「超級電腦/大型電腦」、近期「個人電腦」,到即將邁入以超大規模數量電腦主機虛擬集結的「雲端運算」時代。雲端運算將電腦集中運用,未來電腦運算設施就像是水、電;資料儲存與應用就像是銀行,只要連上網路就可以使用,不必各自投資發展。因此,「雲端運算」未來將成為每個國家的重要基礎建設。   將雲端運算列為重要的產業發展重心,已是各國的趨勢,而運用雲端運算所帶來的效益,如節省經費、提升效率等,亦為普遍地承認,再加上公部門相較於民間,其擁有較多的經費及資源來進行雲端運算的導入,而藉由公部門導入雲端運算,可以帶動雲端運算產業的發展以及雲端運算應用的普及化。因此,各國均皆致力於促進公部門導入雲端運算。   然而,在雲端運算帶來龐大經濟效益的同時,伴隨而來的,是新的資訊管理議題,雲端安全防護聯盟(Cloud Security Alliance, CSA)提出了雲端運算可能遭遇的九大安全威脅 : 一、資料外洩(Data Breaches) 二、資料遺失(Data Loss) 三、帳號被駭(Account Hijacking) 四、不安全的APIs程式(Insecure APIs) 五、拒絕服務(Denial of Service) 六、惡意的內部人員(Malicious Insiders) 七、濫用雲端服務(Abuse of Cloud Services) 八、審慎評鑑不足(Insufficient Due Diligence) 九、共享環境議題(Shared Technology Issues)   面對前述的安全威脅,政府部門在考量導入雲端服務時,首先面對的就是要探討如何在導入雲端運算後仍能維持資訊安全的強度,以及政府部門要從何尋找符合其需求的業者。 壹、事件摘要   美國政府在2010年12月發表了25項聯邦IT轉型重點政策,其中一項核心的政策便是「雲優先政策」(cloud first policy)。根據「雲優先政策」,聯邦機構必須在三個月內找出三項轉移到雲端的政府服務,並且要在一年內導入其中一項。   然而,此種新型態的雲端運算服務為聯邦機構帶來資安管理的新挑戰,傳統由各機關分頭洽談所導入資訊系統與應用規格之方法,並實施個別的資訊安全需求與政策的作法,對服務商而言,其所提供的相同服務,在各機關導入時,卻必須將受各個機關的審查,造成各機關投入過多的資源在審查程序上,導致政府資源的浪費,不但耗費時間、審查重複,且無法達到建構妥善操作程序的效果。   2012年6月6日,聯邦政府總務管理局(General Service Administration, GSA)宣布「聯邦風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下稱FedRAMP)開始正式運作,GSA並表示,「FedRAMP」的正式運作,將解決美國政府在雲端產品及服務需求上,因各自導入之標準不一致所導致的系統相容性問題、重複投資浪費,並可降低各政府機關自行進行風險評估及管理相關系統所耗費的人力、金錢成本。預估該計畫可為美國政府節省高達40%的預算及費用,預期效益相當可觀。   「FedRAMP」的目的是要為全國政府機關針對雲端產品與服務的風險評估、授權管理以及持續監控等標準作業規範,建立一套可遵循之依據。未來所有雲端產品的服務提供者,都必須遵守及達到該計畫的標準規範,才能為美國政府機關提供雲端產品及服務。 貳、重點說明   「聯邦風險與授權管理計畫」主要由預算與管理辦公室(Office of Management and Budget, OMB)負責組織預算與管理;聯邦資訊長(the Federal Chief Information Officer,CIO)負責跨部門的整合;國土安全部(Department of Homeland Security, DHS)負責網際網路的監控與分析;總務管理局(General Services Administration, GSA) 則建立FedRAMP之架構與程序,並成立計畫管理辦公室( Program Management Office, PMO)負責FedRAMP之操作與管理;以及國家科技研究所(National Institute of Science and Technology, NIST)負責提供技術分析與標準;最後由國防部(Department of Defense, DoD) 、國土安全部、總務管理局,組成共同授權委員會(Joint Authorization Board, JAB),負責對服務提供者的授權與定期檢視。   FedRAMP制度的精神在於「作一次並重複使用」(Do once ,Use Many Times),同一內容的雲端服務,透過FedRAMP,僅須經過一次的評估與授權,即得被多個機關所採用。早期各機關重複檢驗同一廠商的同一服務之安全性,造成資源浪費的問題,將可獲得解決。當其他機關欲採用雲端服務時,可透過FedRAMP,免去再一次的評估與驗證。   FedRAMP主要由第三方評估機構、對服務提供者的評估、以及持續監督與授權等三個部份所構成,簡單介紹如下: 一、第三方評估機構的認證   FedRAMP的特殊之處,在於雲端服務提供者應由通過FedRAMP認證的第三方評估機構(3PAO)來進行審查,而第三方評估機構欲通過認證,除了要符合FedRAMP的需求外,還必須具備雲端資訊系統的評估能力、備妥安全評估計畫、以及安全評估報告等,另外亦同時引進了ISO/IEC17020作為評估機構的資格。其認證程序如下: (一)申請檢視   機構首先必須符合ISO/IEC 17020 檢驗機構的品質與技術能力,並且自行檢視FedRAMP網站上的申請表,自行檢視是否合乎要求,然後決定是否提出申請。 (二)完成要求   機構須分別完成申請表所要求的系統安全計畫(system security plan, SSP)、系統評估計畫(system assessment plan, SAP)、安全評估報告(security assessment report, SAR)。於完成後向計畫管理辦公室提出申請。 (三)審查   在接受申請後,總務管理局會與ISO網路安全專家共同組成「專家審查委員會」(Expert Review Board , ERB),審查該申請。 (四)決議   審查完畢後,FedRAMP計畫管理辦公室(PMO)會檢視ERB的意見,決議是否通過該申請。   於通過申請後,該機構將會被列入FedRAMP官方網站(www.FedRAMP.gov)的第三方評估機構名單,目前為止,陸續已有十五個機構通過共同授權委員會的授權,日後得對雲端服務商進行評估。 二、對雲端服務提供者的評估   在「聯邦風險與授權管理計畫」的機制設計中,政府機關或雲端服務提供者任一方,皆可提出申請(Request)啟動雲端服務的安全性評估(Security Assessment)程序,此程序中共有四個主要階段: (一)提出申請   在申請人將所須文件初步填寫完畢之後,計畫管理辦公室(PMO)即會指派資訊系統安全官(Information Systems Security Officer, ISSO)進行指導,使之得進行安全控制、出具必要文件、並實施安全測試。之後,PMO會與雲端服務提供者簽署協議,並要求相關機關實施對雲端服務系統的安全性測試。 (二)檔案安全控管   雲端服務提供者必須作成系統安全計畫(System Security Plan, SSP),表明安全控制之實施方法,及其相關文件如IT系統永續計畫(IT Contingency Plan)、隱私衝擊調查(Privacy Impact Questionnaire),並送交ISSO進行審查,再由雲端服務提供者就對審查意見予以回覆之後,由ISSO將案件送至共同授權委員會(Joint Authorization Board, JAB)進行審查,以確認所提交的SSP安全措施符合雲端系統所需。 (三)進行安全測試   服務提供者與第三方評估機構(Third Party Assessment Organization, 3PAO)簽約,且由PMO約集雲端服務提供者與3PAO,確認雙方對於安全測試實施的期待與時程,再由3PAO獨立進行該雲端系統測試,並完成安全評估報告(Security Assessment Report, SAR),闡述評估結果並確認所暴露的風險。雲端服務提供者針對此評估結果,作成行動與查核點報告(Plan of Action & Milestones (POA&M)),以提出矯正弱點與殘餘風險(residual risks)的措施、資源與時程規劃。   雲端服務提供者再將前述SAR與POA&M提交予PMO,由JAB決定是否接受該弱點及其修正計畫,或者提出修正建議。倘若JAB可接受該弱點及其他因應措施,則由ISSO通知雲端服務提供者即將進入安全評估的最後階段。 (四)完成安全評估   雲端服務提供者將所有安全控制相關文件彙成單一的安全評估方案,並提出證明將確實執行其安全控制措施。由JAB檢視此方案,並作出最終決定是否授予「附條件之授權」(Provisional Authorization)。得到此授權的雲端服務提供者名單,將會被列在FedRAMP官方網站上。倘若雲端服務提供者未獲得此授權,PMO會指導如何進行重新申請。 三、持續的評估與授權   持續的評估與授權(ongoing Assessment and Authorization, A&A)通常也被稱為持續監控(Continuous Monitoring),在FedRAMP中第三個也是最後一個流程,透過持續的評估與授權機制,來確保雲端服務提供者持續的安全性授權。其中包含了三個主要層面: (一)操作的能見度   操作能見度的目標,是藉由自動化的方式來減少政府機構在監督作業上的行政耗費。亦即雲端服務提供者透過自動化的資料提供、定期提交具體控制的證據文件、以及年度自我認證報告等安全控制措施來說明操作的能見度,而不必政府機構另行要求。 (二)變更控制程序   雲端服務提供者更新她們的系統是常有的事,此處的變更控制程序並非針對例行性的維修或變更,而是要求若有發生影響臨時性授權或的顯著變更時,服務提供者必須提供此種具衝擊性變更的有效資訊,使FedRAMP得以評估此變更的影響與衝擊。 (三)事件回應   事件回應方面聚焦於新風險和漏洞的因應,服務提供者在發現影響授權的新風險或漏洞時,應向機構說明其針對保持系統安全的因應對策與作法。 參、事件評析   在各國紛紛投入雲端運算的推動熱潮中,我國也不能在此項產業推動中缺席。2010年4月,行政院科技顧問組(現已改組為行政院科技會報)責成經濟部,研擬「雲端運算產業發展方案」;2011年5月,行政院研究發展考核委員會亦公布了「第四階段電子化政府計畫」,在內部運作管理面向,將運用新興雲端運算技術推動以全國性的政府雲端應用服務,減少機關重複開發成本,並達成節能減碳效果。   雲端的安全問題,無論在私人企業或政府部門,均為選擇導入雲端服務的第一要務,「第四階段電子化政府計畫」中亦指出第四階段電子化政府將以雲端資安防護推動為重點,運用雲端運算技術,創新資安服務價值,確保政府資通安全防護。   然而,在服務提供者的安全性方面,我國並沒有像美國FedRAMP計畫般適度地提供服務提供者的安全性保證。對此,我國可借鏡各國的作法,適度的以透過公正第三方機構驗證,來消除雲端服務安全性的疑惑,並推動一個公開的平台,將通過驗證的廠商公布出來,提供公部門甚至私人企業作選擇,不僅可免去同一服務廠商不斷重複驗證的麻煩,亦可削減選擇上的難題,並藉此發展雲端資安技術與推動雲端產業,使我國的雲端環境能夠更臻成熟。

法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料

  法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為: 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。   因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。

英國政府公布物聯網設備安全設計報告,提出製造商應遵循之設計準則草案

  英國數位、文化、媒體暨體育部於2018年3月8日公布「安全設計(Secure by Design)」報告,此報告目的在於使IoT設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。   此報告中包含了一份經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論後,提出之可供製造商遵循之行為準則(Code of Practice)草案。   此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。   其中提出了13項行為準則:1. 不應設定預設密碼(default password);2. 應實施漏洞揭露政策;3. 持續更新軟體;4. 確保機密與具有安全敏感性的資訊受到保護;5. 確保通訊之安全;6. 最小化可能受到攻擊的區域;7. 確保軟體的可信性;8. 確保個資受到妥善保障;9. 確保系統對於停電事故具有可回復性;10. 監督自動傳輸之數據;11. 使用戶以簡易的方式刪除個人資訊;12. 使設備可被容易的安裝與維護;13. 應驗證輸入之數據。   此草案將接受公眾意見,並於未來進一步檢視是否應立相關法律。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP