WHO發布《2019‑nCoV戰略準備和應對方案》呼籲全球加速研發創新以對抗疫情

  2020年2月3日,世界衛生組織(World Health Organization, WHO)發布《2019新型冠狀病毒戰略準備和應對方案》(2019 Novel Coronavirus: Strategic Preparedness and Response Plan),呼籲全球合作以加速研發創新,對抗新型冠狀病毒(2019 novel coronavirus, 2019-nCoV)。WHO提出的戰略目標包含六大項:限制人與人間的傳播防止疫情擴散、盡速發現並隔離以便提供患者最佳照護、查明並減少動物來源的傳播、加速診斷治療和疫苗開發、傳達重要且正確的風險與事件資訊、透過合作夥伴關係減少疫情對社會經濟影響。而WHO設立的戰略目標,可以透過以下方式實現:(1)加速建立國際協調方案,透過現有機制及合作夥伴關係提升防疫戰略、技術及業務支持。(2)擴大各國家的災難準備與緊急應變行動方案,包括加強準備、迅速發現、診斷並進行治療;在可行的情況下發現並追蹤感染者;強化醫療機構中的感染預防及控制;實施旅行者的健康管理措施;提升人民對疫情風險認識、減少社區交流風險等。(3)加速對2019‑nCoV的研究及創新,優先推動快速篩檢追蹤與擴大研發創新規模、開發候選療法、疫苗及診斷方法,確保醫療資源的公平可用性。藉由防疫標準化流程與知識平台的建立,促進並匯集學界合作的研究成果。

  另外,WHO在本戰略中明列出八大衡量指標,用以評估各國因應2019-nCoV的計畫準備與成效,以便WHO能與政府合作,共同改善全球防疫系統。該八大指標分別為:流行病學症狀分析與疫情規模判斷能力、戰略準備及預算管理計畫、防疫物資供應程度、研究開發與臨床實驗比例、國家公共衛生系統疫情準備能力、建構檢驗與快篩的即時通報系統、完善診斷流程與安全隔離措施、疫情報告與資訊分享機制等。

本文為「經濟部產業技術司科技專案成果」

相關附件
你可能會想參加
※ WHO發布《2019‑nCoV戰略準備和應對方案》呼籲全球加速研發創新以對抗疫情, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8466&no=64&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

愛爾蘭ISP業者被控侵犯著作權

  愛爾蘭最大的ISP業者Ericom因其使用者利用Ericom提供之網路服務傳輸音樂檔案,而遭EMI、Sony BMG、Universal及Warner提起訴訟,控告其涉嫌侵害著作權,要求Ericom應過濾其內容可能涉及侵害著作權之檔案。對此,Ericom向愛爾蘭高等法院表示,Ericom在法律上並無義務監督在其網路上所承載的檔案內容。   愛爾蘭數位權利壓力團體「愛爾蘭數位權利」(Digital Rights Ireland,簡稱DRI)聲稱,上述音樂出版業者對於Ericom的指控及要求於法無據,因為ISP業者不過是資料來源的媒介,並無法律義務對於網路上使用者的行為負責;歐盟也無法律特別要求業者應監督其所提供網路服務傳遞的資訊內容。DRI亦表示,若立法要求業者應監督傳輸之檔案,除將侵犯網路使用者的隱私權外,更意味著要求使用者付費讓業者監督其使用網路之行為,但目前過濾篩選技術仍不夠完善,反而會影響合法使用網路服務之用戶。   雖然如此,ISP業者仍面臨了越來越多的國際壓力,要求應即時阻攔使用者非法分享之檔案。如2008年夏季,法國將提出一套測試系統以協助ISP業者封鎖涉及侵權之資訊;比利時法院於2007年判決要求某個ISP業者應過濾其傳輸之資訊;日本ISP業者之代表組織亦強調,若發現使用者使用軟體違法分享音樂及遊戲檔案,將即時切斷網路服務,以防止使用者透過網路分享檔案侵害著作權。對於違法分享檔案之行為,若英國網路服務業者與音樂工業之意見仍未能達成一致,英國政府將立法要求,ISP業者應對違法分享檔案之使用者發出警告,而使用者仍堅持從事該違法行為,則其所使用之網路服務將會中斷。   目前,對於使用者利用ISP業者所提供之服務從事侵害著作權之行為,該業者是否應為使用者之違法行為負責已成為各國專家廣泛討論之議題,未來有關該議題之立法仍有待持續關注。

加拿大安大略省通過修正健康資訊保護法

  加拿大安大略省議會於2016年5月三讀通過修正健康資訊保護法(Health Information Protection Act, HIPA)。該法案藉由一連串措施,包括增加隱私保護、問責制與提升透明度,以提高病人地位。 1.在符合指令定義內,將違反隱私之行為強制性地通報與資訊與隱私專員; 2.強化違反個人健康資訊保護法之起訴流程,刪除必須於犯罪發生之六個月內起訴之規定; 3.個人犯罪最高額罰款提升到50,000元至100,000元,組織則為250,000元至500,000元。   而健康資訊保護法也將更新照護品質資訊保護法(Quality of Care Information Protection Act, QCIPA),有助於提升透明度,以保持醫療系統的品質,更新內容包括: 1.確認病患有權得知其醫療相關資料; 2.釐清不得對關於受影響的病患與家屬保留重要事項之資訊與事實; 3.要求健康與長照部(Minister of Health and Long-Term Care)每五年定期審查照護品質資訊保護法。   安大略省亦正著手研究由專家委員會提出,所有關於提升照護品質資訊保護法所稱重大事故透明度之建議。   藉著透過該目標,將可提供病患更快的醫療,更好的家庭與社區照顧,安大略政府希望可以透過上開手段以保護病患隱私以及加強其資訊透明度。

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP