美國專利與商標局於2020年4月27日拒絕人工智慧(AI)為發明人之申請並闡明發明人僅限於自然人。本案是美國專利與商標局首次拒絕人工智慧為發明人之申請,同時本最終審查意見(下稱:本意見書)也是第一次闡明發明人僅限於自然人。本意見書也被收錄在美國專利與商標局「人工智慧」、「首席專利審查官最終審查意見」之頁面,作為指標案例。
本意見書是在回應2020年1月20日專利申請申復案(Petition)之審查意見。回顧本專利申請案之基本資料表,發明人名字為「DABUS」、姓氏部分僅以括號註明「由人工智慧自行產生的發明」。本案法定代理人及申請人均為Stephan L. Thaler。Stephan L. Thaler表示,DABUS是一個神經網路系統且「有創意的機器」。美國專利與商標局表示,綜觀美國專利法的用詞(如:Whoever)及立法脈絡,均可得知發明人指的是自然人。具體而言,發明人必須是貢獻發明概念(Conception)的人,專利審查程序手冊(MPEP)定義「發明概念」是一個將發明人「創造行為之心智的完整呈現」(the complete performance of the mental part of the inventive act),僅有自然人具有「心智」(Mental/ Mind),因此發明人僅限於自然人。本審查意見又援引Beech Aircraft Corp. v. EDO Corp.判決,指出「發明人僅限於自然人」。所以,將專利申請基本資料表的姓名欄位填上「DABUS(由人工智慧自行產生的發明)」並不符合美國專利法第115條(35 U.S. Code § 115)。
本案於2019年7月29日提出,隨即於2019年8月8日被美國專利與商標局以「申請文件欠缺,不符合發明人與其繼受人之規範」(35 U.S. Code § 115和37 CFR 1.64)拒絕受理。幾番修正往返後,美國專利與商標局於2019年12月17日仍以「申請文件欠缺」不予受理,Stephan L. Thaler續行申復。美國專利與商標局於2020年4月27日做出本意見書。同一由DABUS創造的發明,但由Ryan Abbott作為申請人的案件,已被歐洲專利局和英國智慧財產局於2019年12月以雷同的理由拒絕。目前美國專利與商標局、歐洲專利局、英國智慧財產局面對人工智慧為發明人之專利申請,立場都是發明人僅限自然人。
本文為「經濟部產業技術司科技專案成果」
美國證券交易委員會(United States Securities and Exchange Commission,下稱SEC)於2022年12月8日發布「致公司有關近期加密資產市場發展之樣本函(Sample Letter to Companies Regarding Recent Developments in Crypto Asset Markets)」指引文件(下稱本指引),指導公司應針對自身業務涉及近期加密資產市場動盪事件(如虛擬貨幣交易所破產等),進行直接或間接影響之風險揭露,以符合聯邦證券法規之資訊揭露(如風險及風險暴露等)義務。SEC轄下之企業金融處(Division of Corporation Finance,以下簡稱金融處)認為公司應向投資者提供具體且量身訂製之市場動盪事件報告、揭露公司在動盪事件中之狀況以及可能對投資者造成之影響。爰此,本負有常態報告義務的公司應據此考量現有的揭露內容是否須進行更新。 金融處說明,為加強並監督公司對資訊揭露要求之遵守狀況,爰依據1933年證券法(Securities Act of 1933)及1934年證券交易法(Securities Exchange Act of 1934)內涵,要求公司亦須針對應作出聲明的實際狀況,進一步揭露相關重大訊息,且不得進行誤導。本指引所要求公司明確揭露加密資產市場發展的重大影響,包括公司對競爭對手及其他市場參與者之風險暴露;與公司流動資金及獲取融資能力相關的風險;及與加密資產市場法律程序、調查或監管影響相關的風險等。 值得注意的是,本指引並未列出公司應考量問題的詳細清單,個別公司應視自身情況評估已存在之風險,或是否可能受到潛在風險事項的影響。由於公司所揭露之文件事前通常不會經過金融處審查,因此金融處也敦促各公司應自主依循本指引進行相關文件準備。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
大倫敦政府提倡倫敦城市資料市集大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。