美國商務部修改《出口管制規則》限制華為取得由美國技術及軟體設計製造的半導體產品

  美國商務部工業及安全局(Bureau of Industry and Security, BIS)於2020年5月15日公告,為防止中國大陸華為取得關鍵技術,修正美國《出口管制規則》(Export Administration Regulations, EAR)第736.2(b)(3)條第(vi)款「外國直接產品規則」(Foreign-Produced Direct Product Rule),限制華為透過國外廠商,取得包含美國技術及軟體設計製造在內的半導體產品,以保護美國國家安全。並於「實體清單」(Entity List)增加註腳一(footnote 1 of Supplement No. 4 to part 744)之規定,使部分出口管制分類編號(Export Control Classification Number, ECCN)第3(電子產品設計與生產)、4(電腦相關產品)、5(電信及資訊安全)類之技術所製造的產品,不能出口給華為與分支企業。

  自2019年起,BIS將華為及其114個海外關係企業列入實體清單以來,任何要出口美國產品給華為的企業,必須事先取得美國出口許可證;然而,華為及其海外分支機構透過美國委託海外代工廠商生產產品事業,繞道使用美國軟體和技術所設計的半導體產品,已破壞美國國家安全機制與設置出口管制實體清單所欲達成之外交政策目的。本次為修補規則漏洞調整「外國直接產品規則」,不僅限制華為及其實體清單所列關係企業(例如海思半導體),使用美國商業管制清單(Commerce control list, CCL)內的軟體與技術,設計生產產品。美國以外廠商(例如我國台積電)為華為及實體清單所列關係企業生產代工,使用CCL清單內的軟體與技術,設計生產的半導體製造設備與產品,亦將同受《出口管制規則》之拘束。這代表此類外國生產產品,從美國以外地區,透過出口、再出口或轉讓給華為及實體清單上的關係企業時,皆需取得美國政府出口許可證,影響範圍擴及全球產業供應鏈。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國商務部修改《出口管制規則》限制華為取得由美國技術及軟體設計製造的半導體產品, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8495&no=16&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
中國擬透過擴大高科技設備進口之方式解決貿易順差過大問題

  中國近年來與美歐等國的貿易順差快速增長,此一方面彰顯中國的國際競爭力逐步提高,但也帶來人民幣升值壓力加大、貿易摩擦增多等問題。在去年底召開中央經濟工作會議,中國提出要把促進國際收支平衡作為宏觀調控的重要任務,緩解外貿順差過大所產生的問題。   近期中共商務部宣布將會同有關部門,採取五項具體措施包括:盡快頒布擴大先進技術設備進口的政策;加強從貿易順差國進口;大型展會增加進口功能;簡化手續及完善進口管理法規,規範進口市場秩序等,解決貿易順差過大的問題。其中最值的注意的是,中國擬藉由擴大先進技術設備進口之方式,解決貿易順差問題,其重點支持的高科技設備進口包括:大陸急需的半導體製造設備、高級化纖設備、高性能數控機床等先進技術設備,以及節能降耗的新設備、新工藝和新技術之進口。   為此,中國除規劃組織企業赴國外採購,擴大自美國、俄羅斯等重點國家的進口,推進節能環保領域的國際交流合作外,亦擬利用於舉辦大型展覽會之際增設進口館,鼓勵和支持各地設立機電產品進口展覽館,舉辦國外機電產品展覽。

RFID應用與相關法制問題研析-個人資料在商業應用上的界限

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

保險新品~開放原始碼保單

  由於開放原始碼的風氣盛行,使得許多 軟體業者 在使用開放原始碼軟體開發自家的軟體產品時,常不小心 逾越開放原始碼的授權範圍而陷身於 侵權的風險中。大抵一般比較常見的侵權情形,如企業開發專有軟體時, 利用單一或多樣以上的開放原始碼元件來建置,如交易工具或財產庫存管理應用程式等,而將這些程式流通於內部企業網路或是傳遞給外部客戶使用時,已構成”散佈”行為,是觸犯了開放原始碼 GPL ( General Public License ,通用公共許可 )授權 。   日前位於紐約的 開放原始碼風險管理公司( Open Source Risk Management , OSRM )結合 Lloyd's 保險業者 Kiln 及 Miller 保險經紀公司推出開放原始碼保單來承擔企業使用開放原始碼的風險,該保險單最高賠償金額為 1000 萬美元。平均而言,企業若是投保 100 萬美元的保單,每年大約必須支付 2 萬美元的保險費。

TOP