美國國防部5G戰略

  因應5G通訊技術快速發展與關鍵應用逐漸普及之趨勢,美國國防部於2020年5月2日由部長批准「國防部5G戰略」(Department of Defense 5G Strategy,以下簡稱5G戰略);同月發布之公開版(unclassified)5G戰略,為美國軍方第一份公開發布的5G戰略性指導文件,主要內容包含指出國防部面對5G帶來的挑戰、設定5G技術發展目標、擬定5G發展行動計畫(lines of effort)等,以確保美國在軍事與經濟上的優勢地位。

  5G戰略指出,5G技術對於維持美國軍事與經濟優勢至關重要,為關鍵戰略性科技(critical strategic technology)。5G技術為產業與軍事帶來重大變革的契機,同時也帶來對資通安全的挑戰,特別是由於美國潛在的競爭對手國家,正試圖在美國的關鍵合作夥伴國家的5G市場占據主導地位,使得5G基礎建設供應鏈成為競爭對手利用有害元件、惡意軟體或非法存取等方式入侵美國與其合作夥伴的破口,最終將損害美國的國家安全與利益。

  因此美國國防部將鼎力協助美國與其合作夥伴提升5G技術力、提高對5G的風險意識至國安層級、開發保護5G基礎設施與技術之措施。具體行動計畫包含:一、藉由大量的實驗場域驗證5G應用,推動技術發展;二、掌握5G資安威脅情報與威脅,評估、識別資安風險採取必要措施,並採取零信任(Zero Trust)反覆驗證之資安模式;三、積極加入5G技術相關標準訂定與規劃5G國防政策;四、吸引國際組織、國家與相關產業的合作夥伴,積極溝通協調以維持美國與合作夥伴間的共同利益,協助美國的盟友與合作夥伴識別5G風險。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 美國國防部5G戰略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8498&no=67&tp=5 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
「環境科技、環境政策與貿易」專題連載(3):環保標章、環境商品市場拓展與貿易

日本發布關鍵基礎設施資訊安全對策第4次行動計畫

  為了持續維持日本國內以及與東京奧運舉辦相關的關鍵基礎設施服務的安全性,日本內閣網路中心於2017年4月19日公布關鍵基礎設施資訊安全對策第4次行動計畫。   在第4次行動計畫,關鍵基礎設施防護目的主要是以關鍵基礎設施的功能保證為考量,盡量減少關鍵基礎設施IT故障的發生,並提升從事故中恢復的速度。因此,第4次行動計畫除持續檢討並改善第3次行動計畫原有政策外,較重要的變革為OT(Operation Technology)的重視與風險對應機制整備。在安全基準整備與落實情況方面,要求關鍵基礎設施產業須將OT的觀點融入人才培育。在資訊分享制度方面,分享的資訊範圍應包含IT、OT與IoT的資訊,並排除資訊分享的障礙。而在風險管理部分,日本從功能保證的觀點出發,新增風險情況對應準備的要求,包含事業持續計畫的提出與緊急應變措施的制定等。而在防護基礎強化上,該行動計畫認為關鍵基礎設施產業的IT、OT人員及法務部門必須依其內部資訊安全策略共同為關鍵基礎設施安全而跨組織合作。   另外,第4次行動計畫變更電力領域關鍵基礎設施的重要系統,從原有的運轉監視系統變更為智慧電表,以及新增化學、信用卡與石油三大關鍵基礎設施領域的業者、關鍵系統與因IT故障對關鍵基礎設施可能造成的危害影響。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

日本公布資料信託功能認定指引ver1.0並進行相關實驗

  日本總務省及經濟產業省於2017年11月至2018年4月間召開6次「資料信託功能認定流程檢討會」(情報信託機能の認定スキームの在り方に関する検討会),檢討具備資料信託功能之「資料銀行」認定基準及模範條款等事項,於2018年6月公布「資料信託功能認定指引ver1.0」(情報信託機能の認定に係る指針ver1.0),以利實現個人資料流通並創造新服務型態。資料銀行係指基於與個人間資料利用契約,透過PDS(personal data store)等系統管理個人資料,根據個人指示或預先設定的條件,於判斷妥當性後向第三方提供資料之行業。目前指引內容包括︰(1)資料信託機能認定基準︰具體內容包括業者適格性、資訊安全原則、資訊安全具體基準、治理體制、業務內容等;(2)模範條款記載事項︰針對個人與資料銀行、資料銀行與資料提供者、資料銀行與接受資料提供者間關係,列出具體應記載事項;(3)資料信託機能認定流程。   作為日本總務省「資料信託功能運用推動計畫」(情報信託機能活用促進事業)一環,日立製作所、東京海上日動火災保險、日本郵局等於2018年9月10日發表將根據「資料信託功能認定指引ver1.0」,進行「資料銀行」個資管理、提供及運用等實驗,參與者分別扮演資料提供者、資料銀行和資料利用者三種角色,未來將會參考實驗結果,提出認定基準改善建議。

TOP