日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與

  日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。

  本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法:

(1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。

(2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。

(3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8509&no=64&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

美國加州網路身分冒用法2011年01月正式生效

  2010年12月,加州參議院通過網路身分冒用法(Criminal “E-personation”,Senate Bill 1411),針對在網路上惡意冒用他人名義的行為態樣處罰,法案提案人加州參議員Joe Simitian表示:「現有的身分冒用法規係1872年所訂,無法規範現代科技所衍生的身分冒用態樣。」所以法院一般認為網路上的冒用屬於身分剽竊的態樣,但此類型通常不涉及金錢的損失,法庭上證明困難,受害者求償不易,因而制定此一法案。   本法針對故意、未經同意在網路或其他電子途徑冒用身分,傷害、恐嚇、威脅、詐欺他人的行為,判定為輕罪(standard misdemeanor),最高可處以1000元美金或一年以下有期徒刑。因此,在社群網站中冒用他人名義,發表不雅言論的行為往後可能會受到處罰。   但「傷害、恐嚇、威脅、詐欺」的行為態樣的認定,可能會造成法院實際執法上的困難,而且可能侵害人民憲法第一增修條文的權利。以The Yes Man組織為例,該組織假冒美國商會(American Chamber of Commerce)在網路上發表支持眾議院通過氣候變遷法案,其主要目的在於遊說美國商會改變其立場,本法尚未通過前,美國商會向加州法院提出訴訟,美國商會曾就訴訟過程表達不滿,認為現行法對於身分被冒用者無所助益,然新法正式施行後,本案如何在不侵犯憲法第一增修條文的情況下,嚇阻真正帶有惡意的身分冒用者,值得進一步觀察。

英國發布《資料主體近用權指引》說明資料近用權法遵重點及實例解析

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年10月21日發布《資料主體近用權指引》(Guidance of Right of access),針對資料主體行使資料近用權之請求(Data Subject Access Request, DSAR),受請求之機構應如何進行識別判斷、簡化處理方式,以及特殊例外情況等法遵重點提供指導方針,並進行實例說明解析,以幫助受請求之機構在面臨資料主體之近用權請求時能快速且有效的處理。   英國「個人資料保護法」(The Data Protection Act 2018)依據歐盟「一般資料保護規則」(GDPR)於2018年重新修訂,其中資料近用權更是對於資料主體相當重要的基本權利,進而影響受請求之機構必須了解如何有效率的處理資料近用權之請求,並確實履行其在法規上所要求的保護義務,主要分為三點: 在資料主體確認其資料近用權所欲請求的範圍之前,受請求之機構依法應回覆時限應予以暫停,以利受請求之機構能有更充裕完整的時間釐清及回應資料主體之近用權請求。 為了避免受請求之機構耗費大量時間判斷何謂「明顯過度之請求」(manifestly excessive request),該指引提供相關定義說明及判別標準。 針對「明顯過度之請求」收取處理費用所包含的項目,例如受請求之機構處理請求所增加人力行政成本,在受請求之機構收取處理費用時可將其納入斟酌。

英國Ofcom宣布改善消費者轉換服務業者之流程

  英國電信管制機關Ofocm於2013年8月宣布了新的措施,目的在幫助消費者轉換其電話和寬頻服務業者時,更加輕鬆與方便。   當消費者計畫轉換其寬頻服務業者時,時常面臨著必須許多不同業者的手續、流程,包含轉換與被轉換的業者,以及中介服務的業者。如此複雜的轉換過程造成混亂,也容易讓消費者認為轉換服務業者是很麻煩的,某種程度上阻礙消費者選擇較佳服務業者的機會。   Ofcom的研究指出,在轉換業者的過程中,最大的阻礙在於,消費者有時覺得不好意思向目前提供服務的業者提出轉換的申請,在這樣的過程中,現在的業者有很多的主導權,例如對於轉換過程的遲延或服務的中斷,均導致消費者承受不必要的拖累。   為了解決這些問題,Ofcom決定,未來當消費者計畫轉換服務業者時,只需要遵循一個單一的轉換程序,由新的服務業者代表消費者進行此一過程。   這個「由遷入供應商主導(gaining provider led,GPL)」的過程中,已廣泛的是用於電話和寬頻服務之轉換程序,消費者將不再需要聯繫他們現有的服務業者、收到一個編號,以轉換業者。   Ofcom還設置了額外的措施,以幫助防止消費者在轉換的過程中遭遇服務的中斷、或是有未經消費者同意的轉換。   一個明確的和改進的切換過程中,以幫助消費者。   Ofcom在既有GPL程序的基礎上進行改善,制訂單一的流程,強化流程的監督,為消費者提供增值收益。   根據Ofcom初步制訂的單一轉換流程,服務業者必須遵守以下指示: ‧留存每一位消費者轉換服務的相關同意記錄,以保護消費者在不知情之下,被轉換到不同的業者; ‧防止消費者轉換時出現服務的空窗期,特別是電話和寬頻服務的轉換; ‧給消費者提供關於業者服務品質的資訊,如提前終止服務時,可能需負擔的額外費用變化,使消費者可以做出明智的決定。   Ofcom計畫於2014年初將細部程序制訂並執行,並可能提出下一階段的工作,涵蓋兩個關鍵領域: ‧持續與業者溝通,確保消費者得到更好的保護; ‧進一步改進電話、不同類型的寬頻服務、不同類型的網路之間的轉換(例如Cable網路)

TOP