美國2020年國防太空戰略(Defense Space Strategy)

  美國國防部於2020年6月17日發布「國防太空戰略」(Defense Space Strategy),作為確保美國維持其太空戰略優勢的發展藍圖。國防部長Mark T. Esper指出,一個安全、穩定且開放的太空領域是美國用以支持其國家安全、繁榮科學發展的基礎,然而在各國太空技術競逐之下,太空已儼然成為新的作戰領域(warfighting domain),對此美國應針對政策、策略、任務、投資、能力與專業等面向實施全面性的改革,「國防太空戰略」擘劃出美國如何在接下來的10年內達成其確保美國太空戰略優勢的目標。

  「國防太空戰略」提出三大目標:首先,國防部將支持並捍衛美國在太空中的軍事行動自由(freedom of operations),並遏止任何具有敵對意圖的使用以維持美國的太空優勢;其次,美國太空軍(U.S. Space Force)將運用其先進的國防太空技術優勢以協助美國及其盟友的太空軍事行動,並支持民間與商用太空技術產業發展;最後,美國將與盟友共同維持太空領域的穩定,防止任何侵略性的太空活動、建構國際公認的太空行為準則,並支持美國在太空交通與長期外太空活動的領導地位。

  為了達成上述三大目標,「國防太空戰略」提出四個優先行動方向,分別為:(1)藉由太空軍的組織改造整合資源,以應對敵對勢力的太空軍事行動並建立全面性的太空軍事優勢。(2)提升作戰層次,整合太空軍事力量包含任務、情報、技能與人員於國家與國際聯合軍事行動當中。(3)提升國際對於太空潛在威脅的重視,推動國際太空行為準則以打造太空戰略環境。(4)透過情報共享、研發與採購(research, development, and acquisition, RD&A)與盟友、合作夥伴、產業及其他政府部門合作,提出對於國家太空政策與國際太空行為準則的建議。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國2020年國防太空戰略(Defense Space Strategy), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8518&no=67&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
英國數位、文化、媒體暨體育部公布「家用智慧裝置消費者指引」

  英國數位、文化、媒體暨體育部於2018年10月14日公布「家用智慧裝置消費者指引」(Consumer guidance for smart devices in the home)。該指引之目的係因應家用之智慧及聯網設備(例如:智慧電視、音樂播放器、聯網玩具或智慧廚房等)日益普及,以及可能發生之侵害消費者個人資料之風險。 本指引提出以下方向,供消費者參考:  一. 智慧裝置之設定   (一) 應閱讀與遵循智慧設備之設定指示。   (二) 確認設備指示是否要求使用者須至製造商網站設定帳號。   (三) 若所設備預設之密碼過於簡單(例如,0000),則應更換成較複雜之密碼。  二. 帳號管理   (一) 確保密碼複雜性。   (二) 若設備提供雙重驗證功能,消費者應使用之。   (三) 特定產品可能提供遠端存取功能,消費者應於不再家時考慮將該功能關閉。  三. 持續更新應用軟體與Apps   (一) 消費者應檢查其設備是否可設定自動更新。   (二) 應安裝最新版本的軟體與Apps。  四. 若接到資安事件之通知,應採取行動   (一) 於接到資安事件通知後,應訪問製造商網站以確認其是否提供後續因應措施等資訊。   (二) 定時確認國家安全網路中心以及資訊保護委員會辦公室網站是否公布相關網路安全指引。

英國設立綠色財政委員會,檢討未來稅制綠化的方向

  英國為了達到稅制綠化的目標,特別在2007年底設置了一個集合產官學背景人員及消費者與環保組織代表組成的稅制檢討委員會-綠色財政委員會(Green Fiscal Commission, GFC)。GFC定位為獨立的組織,其任務是在未來的一年半期間,針對英國如要導入綠色稅與環境稅的稅制變革(green taxes and environmental tax reform, ETR),檢視完成其所涉及的相關議題,特別是導入困難之處何在,以期將過往對財貨“good“(例如勞動活動所產生的所得或收入)課稅的精神,規劃轉向為對環境有害的結果“bad“(如環境損害)予以課稅,GFC預計在2009年4月提出正式的報告,而報告探討的重點將會集中在以下三大部分:   - 有關環境稅如何執行與操作之資訊與證據   - 有關社會大眾與利害關係人對於環境稅所持態度之資訊與證據   - 針對研究報告內容對外進行適當的溝通   英國欲進行綠色稅制改革,主要是基於歲收中和(revenue neutral)的考量,意指對財貨的租稅減免(tax cuts on ‘goods’)短缺,應透過對有害活動課稅所增加的稅收,予以平衡。英國政府希望可以藉由GFC的研究成果,成果進行綠色稅制改革,讓英國的稅收來源在2020年可以達到至少有20%是源自於綠色稅。

美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

TOP