美國2020年國防太空戰略(Defense Space Strategy)

  美國國防部於2020年6月17日發布「國防太空戰略」(Defense Space Strategy),作為確保美國維持其太空戰略優勢的發展藍圖。國防部長Mark T. Esper指出,一個安全、穩定且開放的太空領域是美國用以支持其國家安全、繁榮科學發展的基礎,然而在各國太空技術競逐之下,太空已儼然成為新的作戰領域(warfighting domain),對此美國應針對政策、策略、任務、投資、能力與專業等面向實施全面性的改革,「國防太空戰略」擘劃出美國如何在接下來的10年內達成其確保美國太空戰略優勢的目標。

  「國防太空戰略」提出三大目標:首先,國防部將支持並捍衛美國在太空中的軍事行動自由(freedom of operations),並遏止任何具有敵對意圖的使用以維持美國的太空優勢;其次,美國太空軍(U.S. Space Force)將運用其先進的國防太空技術優勢以協助美國及其盟友的太空軍事行動,並支持民間與商用太空技術產業發展;最後,美國將與盟友共同維持太空領域的穩定,防止任何侵略性的太空活動、建構國際公認的太空行為準則,並支持美國在太空交通與長期外太空活動的領導地位。

  為了達成上述三大目標,「國防太空戰略」提出四個優先行動方向,分別為:(1)藉由太空軍的組織改造整合資源,以應對敵對勢力的太空軍事行動並建立全面性的太空軍事優勢。(2)提升作戰層次,整合太空軍事力量包含任務、情報、技能與人員於國家與國際聯合軍事行動當中。(3)提升國際對於太空潛在威脅的重視,推動國際太空行為準則以打造太空戰略環境。(4)透過情報共享、研發與採購(research, development, and acquisition, RD&A)與盟友、合作夥伴、產業及其他政府部門合作,提出對於國家太空政策與國際太空行為準則的建議。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國2020年國防太空戰略(Defense Space Strategy), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8518&no=67&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

中國大陸之工業和信息化部發布《算力標準體系建設指南》之徵求意見稿,欲加強算力低碳標準發展

2025年10月21日,中國工業和信息化部發布《算力標準體系建設指南》(徵求意見稿),公開徵求意見。提出九大部分,包含基礎通用、算力設施、算力設備、算網融合、算力互聯、算力平台、算力應用、算力安全以及綠色低碳標準。其中,「綠色低碳」標準旨在引導算力產品、平台及應用在全生命週期內實現環境友好、資源節約與能源高效利用,包含: 1. 綠色低碳產品標準:規範算力產品從設計、生產、使用到廢棄處理全過程的環境影響。包括節能設備技術要求、有害物質管控、材料回收與循環利用,以及生命週期評估(LCA)等標準。 2. 綠色低碳平台標準:建立可以整合統計與分析電、水、碳、熱、冷等資訊的綜合性管理平台。標準涵蓋了平台的架構設計、數據對接與管理功能,以實現能源使用的精細化監測。 3. 綠色低碳應用標準:針對算力服務過程中的環保表現進行評價,包含碳足跡核算、環境適應性、綠色供應鏈管理以及綠色算力的計算方法。 4. 能效監測技術標準:定義算力中心的各項能效核心指標,如電效、水效、碳效及空間效率。此外,也規範了監測頻率、先進節能技術的使用規範以及可再生能源的使用佔比。 5. 算力電力協同標準:規範算力資源與電力資源的協同調度,重點包含「源網荷儲」一體化、算電協同管理及相關關鍵設備的技術要求,以提升整體能源利用效率。 根據徵求意見稿,到2027年,中國將在算力通用基礎、基礎設施、設備、網路融合、平台、應用、安全以及綠色低碳等領域,制定或修改50項以上標準。

日本《科技創新成果活用法》

  為推動研發制度的改革並強化研發能力及效率,日本於2018年12月14日通過法律修正案,將原《研發力強化法》(研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律)更名為《科技創新成果活用法》(科学技術・イノベーション創出の活性化に関する法律),透過調整大學、國立研究開發法人(以下簡稱研發法人)的研究人員僱用制度、國家或人民安全相關研發預算的確保,以及研發法人投資科技研發成果之運用等相關制度的調整,以支持未來日本在科技創新研發能力的提升,以及研發成果的有效運用。   本次修法最大的重點,為研發法人投資研發成果運用的明文化,過去在《研發力強化法》中,僅規定研發法人得進行有助於成果運用的出資或技術協助等業務(第43條之2),但對於是否能保有因出資或技術協助所取得之收入(例如股票),則由各研發法人以其設置法另為規範;本次修正之《科技創新成果活用法》,則於第34條之5明文規定研發法人不受獨立行政法人不得持有股票的限制,可持有其運用研發成果進行技術作價投資或成立新創,所取得之股票或新股認股權,確立研發法人在支持研發成果運用上的功能與角色。

美國啟動「綠色按鈕」機制,落實21世紀智慧電網政策綱領

  「綠色按鈕」(Green Button)已於今年(2012)1月正式啟動,運用新的智慧電網科技,容許約六百萬加州用電戶在網站上按下一個按鈕後,便可及時獲取他們的詳細能源使用資訊,同時,其他加州地區公用事業業者也承諾在同年內讓另外十二萬用電戶也可得到同樣的服務,歐巴馬政府同時也於今年3月22日宣布,全美其他地區九個主要公用事業業者也承諾加入「綠色按鈕」的行動中,提供這個新興服務給超過一千五百萬用電戶,許多其他相關業者也宣布加入行動,積極投入發展與「綠色按鈕」相容的應用軟體與服務,提供更多節約能源的方法。   「綠色按鈕」這個行動是由智慧電網互通性專家諮詢小組(SGIP)所主導,這個由美國國家標準與技術研究院(NIST)創立於2009年的工作小組,成員超過750個不同種類的相關業者及政府機關,目的在於致力協調智慧型電網發展的標準與互通性。而為了響應政府的號召—希望業者能提供消費者易懂的能源使用資訊,藉由淺顯易懂的方法讓消費者可以便利地獲取自己對於能源的使用數據,進而設法使消費者減少在能源上的花費,乃係美國政府於去年6月(2011)提出的21世紀智慧電網政策綱領中重要的政策之一。   美國環保署也已經加入了「綠色按鈕」的行列,將利用「綠色按鈕」的數據來幫助商業建築所有人評估他們的耗能與其推動的「能源之星」(Energy Star)認證計畫相結合,給予「能源之星」績效分數(performance scores)。

TOP