歐盟智慧財產局公布2020年智財侵權狀況報告

  歐盟智慧財產局(European Union Intellectual Property Office)於今(2020)年第三季公布最新智財侵權狀況報告,研究報告為其智庫「歐盟智慧財產權侵權觀察平台(The European Union Observatory on Infringements of Intellectual Property Rights)」所執行,並結合經濟合作暨發展組織(Organization for Economic Cooperation and Development)之數據資料,每年以不同主題呈現當年世界智財侵權狀況。今年以「智財權為何重要、智財侵權與打擊仿冒之戰爭」為主題,重點如下:

  1. 智財密集產業對歐盟經濟貢獻占整體GDP的45%、就業人數占歐盟就業人口的29%、出口貨物量占96%。
  2. 企業對智財的重視比例增高,重視智財的企業雇員平均收入較不重視智財權者高出32%;運用智財於營運策略的中小企業成長潛力高於無智財權者,如依權利運用類型區分,其成長率分別是10%(商標)、16%(商標結合專利)、27%(商標與設計權),以及33%(三種權利組合)。
  3. 全球仿冒品占其貿易總量約3.3%,市值高達1,210億歐元。
  4. 除日常藥品,抗生素、癌症或心臟疾病藥物仿冒情形均趨於嚴重;2019年爆發新冠肺炎後,偽造商更是將仿冒移轉至檢測試劑與個人防護用品。

  尤其進入AI與5G時代後,智財密集產業對世界經濟貢獻度可望逐年上升,但侵權狀況恐怕亦同,咎因於該產業之興盛與背後龐大的潛在利益。因此持續推動建立企業的智財意識與防護能力,有其必要性,以助於提升產業發展潛力與整體營運獲利。

相關連結
你可能會想參加
※ 歐盟智慧財產局公布2020年智財侵權狀況報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8529&no=67&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

法國擬針對智慧型手機、平板電腦課徵文化稅

  為了替法國藝術、電影和音樂等文化產業籌措資金,法國政府委託電視頻道集團Canal Plus前任執行長Pierre Lescure進行研究。報告最終建議,法國應針對Apple Inc.的iPhone、iPad及Google Android產品等智慧型手機、平板電腦課徵銷售稅。   報告指出,目前電視頻道、廣播、網路商等,皆已負擔一定費用,以協助文化產業發展,故智慧型手機、平板電腦此類重要媒介亦應採取類似措施。不過為了避免對市場造成過大衝擊,此銷售稅須維持在「極低水準」,預計稅率將落在1%左右,並可望為法國政府每年帶來約8,600萬歐元的稅收。   此舉被認為與法國長期採取的「文化例外(Cultural Exception)」政策立場有關。「文化多樣性」被認為是人類文明發展應遵循的共同價值,為了達成此目標,法國政府進一步認為在經濟層面上,政府基於保護自身文化產業,得在貿易談判中,將文化產業排除於自由貿易架構之外給予優惠,即所謂的「文化例外」。就目前而言,智慧型手機、平板電腦等硬體,在整體文化內容市場中,被認為佔有過大利潤,已壓縮文化產業發展空間,故必須採取適當措施,以衡平市場發展。   此項建議,預計將於今(2013)年7月間,由法國總統François Hollande決定是否正式進入立法程序。

美國國會提出SHIELD法案 圍堵專利蟑螂橫行

  為反制專利蟑螂利用訴訟方式滋擾實際從事研發以及實施專利者,美國國會於2012年8月提出SHIELD法案(Saving High-Tech Innovators from Egregious Legal Disputes Act of 2012 ),顧名思義本法案之目的在於防免高科技創新者陷於惡意挑起的法律爭端之中。該法案補充美國聯邦專利法規定,使得法院得在發現當事人一造並無合理勝訴之可能而仍舊對電腦硬體或軟體專利之有效性提起訴訟,或主張被侵權時,法院得判決其回復全部訴訟之費用支出予除美國以外勝訴之一造(the prevailing party),包括合理之律師費。   SHIELD法案原立意良善,但其也可能就像兩面刃,例如法案的規範內容用語抽象,以致於在企圖達到其立法目的外,未同時設想可能造成的法律陷阱或未預期之法律效果。就法案內容來看,其賦予法院得判決要求回復訴訟費用及律師費之人(所謂勝訴之一造)並不限於原告。又本法案得適用在任何電腦或軟體專利的訴訟,因此,當兩家大型公司相互就專利實施進行對決時,SHIELD法案無異使得原本已經成本很高的競爭更提高雙方的賭注。此外,法案中對「電腦」的定義,不限於一般認知的「軟體或電腦硬體公司」,使得從金融業到汽車製造都可能涵蓋在內,例如銀行就有許多系統可能同時連接具專利之電腦或其他軟體組件。更重要的是,何時勝訴方可獲得律師費之補償判決,法案亦沒有給法院明確之範圍。   雖然本法案最後通過與否或通過施行後的樣貌仍未可知,但可得知的是對於部分NPE之負面利用專利制度之行為,已促使政府與法界思索專利制度如何衡平專利權保護而更能達到專利制度設置之目的,而其未來顯然仍有一段遙遠的路要走。

歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱

  成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素: 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。

TOP