歐盟執委會提出資料治理與資料政策

歐盟執委會提出資料治理與資料政策

資訊工業策進會科技法律研究所
2020年10月12日

  歐盟執委會(European Commission,以下簡稱執委會)於2020年7月提出「資料治理與資料政策」(Data Governance and Data Policies at the European Commission)[1],旨在說明歐盟執委會將如何透過資料治理及相關政策,轉型為資料驅動型組織(data-driven organization),並提供一致的方向或原則,促進執委會下各政務總署(Directorate-General)及事務部門(Service Department)(以下簡稱相關部門機構)之資料共享。

壹、背景目的

  「促成歐洲適應數位時代,並使執委會成為完全數位化、具敏捷性、靈活性與透明性的歐盟組織」是執委會現任主席Ursula von der Leyen所提出的2019年至2024年政策願景之一[2]。隨著數位化發展,透明(transparent)、循證式(evidence-based)的決策需運用人工智慧資料分析技術,「資料」是直接影響人工智慧運用於政策決定的關鍵要素。欲提升人工智慧運用結果被信賴的程度,首先必須有可查找(findable)、可近用(accessible)、可互通(interoperable)、安全(secure)且高品質(high-quality)的資料。歐盟機構內部資料、資訊與知識的共享與治理,有助於此願景之達成。

  因此,執委會提出「資料治理與資料政策」,建立執委會統一的資料治理架構與政策原則,幫助執委會轄下相關部門機構共同遵循資料管理(data management)、資料近用、資料保護、智慧財產權、資訊安全等相關法律與監理要求。同時,執委會亦期能藉此優化資料建立(creation)、蒐集(collection)、取得(acquisition)、存取(access)、利用(use)、處理(processing)、共享(sharing)、保存(preservation)與刪除(deletion)等資料生命週期必經流程,改善資料品質,提升資料管理及共享之效率。

貳、內容摘要

  「資料治理與資料政策」的適用範圍為執委會及其相關部門機構所擁有、利用或再利用的資料集,包括政策決定所使用的資料、行政資料與個人資料。在「資料治理與資料政策」的執行上,則導入「遵守或解釋」(comply-or-explain)原則,除非法律明示規定為選擇性適用,否則執委會轄下相關部門機構皆需遵守;倘未遵守,則需就無法遵守的原因提出解釋。以下分別就「資料治理」與「資料政策」兩大部分重點說明。

一、資料治理

  主要目的在建構執委會統一的資料治理架構,釐清相關角色的責任與相互依賴關係。依角色與任務的不同,執委會將資料治理分為三層級,並由秘書總署集體治理團隊(Secretariat-General corporate governance team)支援三層級的執行工作。

(一)策略層級(strategic level)

  由資訊管理指導委員會(Information Management Steering Board, IMSB),處理資料治理與資料政策相關議題,界定長期推動願景、提供政策方向、監督推動與執行之進程,並作出策略決定。

(二)管理階層(managerial level)

  由資料議題相關的組織、委員會、團體所組成之資料協調小組(data coordination groups)、各地區資料聯絡窗口(local data correspondent)、執委會各相關部門機構下的資料治理委員會(data governance board),以及策略層級就各資料集所指定之資料擁有者(data owner),依策略層級所提出之願景與政策方向,在各處建立並執行資料政策、監督執行進度,並向策略層級報告執行進度及任何超出其決策權限之問題。

(三)運作階層(operational level)

  由資料擁有者選出或指派資料管理員(data steward),並與資料利用者(data user)實際執行資料政策,必要時將相關議題提到管理層級解決。

二、資料政策

  就資料管理(data management)、資料互通性與標準(data interoperability and standards)、資料品質(data quality)、資料保護與資訊安全(data protection and information security)等核心面向,建立上位原則。

  其中關於「資料管理」部分,又依資料生命週期細分。例如在「資料集建立、蒐集或取得」方面採取一次性原則,故執委會轄下相關部門機構在建立、蒐集或取得資料之前,需探詢必要資料或資訊是否已存在,避免重複取得。主要需求資料集的部門機構,應協助讓其他執委會相關部門機構或歐盟機構也獲得使用該資料集之權利。又例如「資料集存取、使用與共享」方面,除非歐盟相關的執委會決定、指令或規則另有規定[3],否則以「需要共享」(need to share)或「預設共享」(share by default)為原則,並使用一致化的資料管理與視覺化工具或資料平台。

  針對「資料互通性與標準」與「資料品質」兩部分,著重在執委會內部的共通一致性,包括資料格式、資料相關詞彙、資料品質的定義與量測等。而在「資料保護與資訊安全」方面,則強調「歐盟機關個人資料保護規則」[4]相關義務,以及歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)所提相關指引之遵循。

參、簡析

  觀察歐盟執委會的「資料治理與資料政策」,可知其資料治理架構與相關政策,是以形成一個資料共享再利用生態系為藍圖。除了強調資料一次性建立及資料預設共享等原則,更從組織管理角度,界定不同單位或角色的任務與責任,並凸顯資料治理管理組織的建構,對資料政策執行之重要性。

  我國政府長期致力於數位國家之發展,在政府資料開放政策推動上已有不少成果,例如建立政府資料開放平台、訂定各級機關資料開放作業原則、統一資料開放格式等。為持續厚植數位國家的資料應用能量,建議未來可進一步完善政府資料治理構面,兼納「政府對民眾之資料開放」及「公務機關間之資料共享」等面向,借鏡歐盟執委會之作法,確立資料共享再利用之管理架構及原則,提升政府資料應用的效率與效能。

 

[1] EUROPEAN COMMISSION, Data Governance and Data Policies at the European Commission (2020), https://ec.europa.eu/info/sites/info/files/summary-data-governance-data-policies_en.pdf (last visited Oct. 5, 2020).

[2] See Ursula von der Leyen, My Agenda for Europe: Political Guidelines for the Next European Commission 2019-2024 (2019), https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf (last visited Oct. 8, 2020).

[3] 例如歐盟執委會決定Commission Decision 2011/833/EU、歐盟規則Regulation (EC) No 1049/2001及歐盟指令Directive (EU) 2019/1024等,有關近用歐盟資料之例外規定。

[4] Regulation on the Protection of Natural Persons with regard to the Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies and On the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001 and Decision No 1247/2002/EC, Council Regulation 2018/1725, 2018 O.J. (L295) 39.

相關附件
你可能會想參加
※ 歐盟執委會提出資料治理與資料政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8550&no=65&tp=1 (最後瀏覽日:2024/11/24)
引註此篇文章
你可能還會想看
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

日本個人資料保護委員會發布「禁止不當利用」與「停止利用」論點資料作為將來發布指引參考

  日本為因應去年6月通過「個人資料保護法」之修正(下稱「新法」),個人資料保護委員會於2021年2月19日第166次會議議題「禁止不當利用與停止利用之完備指引論點」(改正法に関連するガイドライン等の整備に向けた論点について(不適正利用の禁止・利用停止等)),公開兩份論點資料,作為將來發布指引之參考,並使企業等關係者在新法實施準備期間,得採取適當措施以達到法遵要求。   新法第16條之2「禁止不當利用」,旨在防止不當利用個人資料致本人權益受損。於「禁止不當利用之論點資料」指出具體要件有(1)「違法或不當行爲」,係指違反個人資料保護法及其他法令之行爲,或有違公序良俗,在社會觀念上非屬正當之行為;(2)「助長或誘發之危害」,在認定上將限縮在以業者提供時有認識第三方將違法利用個人資料,並可預見提供個人資料將受違法利用之情形,以免造成寒蟬效應。若第三方刻意隱瞞取得目的,即使已盡相當注意仍不能預見違法利用之情形,則非屬「危害」。   新法第30條第5項擴大「停止利用」請求權範圍,於「停止利用之論點資料」指出適用要件有(1)「個人資料處理業務已無利用個人資料之需要」,即個人資料利用目的已消失或該事業已中止時;(2)「發生第22條之2第1項本文情形」,係指發生資料外洩依規定須報告委員會之情形;(3)「可能損害本人權益時」,係指依法受保護之正當權益有受損可能為必要。另論點指出請求停止利用必須在「為防止本人權益受損必要限度內」,故業者對於超出必要限度之部分得拒絕之。而對於停止利用所費不貲或顯有重大困難之情形,得依個案具體考量採取適當替代措施。

美國確立2305-2360MHz區間行動寬頻服務發展規範

  自2001年以來,美國長期無法解決2305-2360MHz頻段上,相鄰之衛星數位音訊廣播服務(Satellite Digital Audio Radio Service, SDARS)業者與無線通訊服務(Wireless Communications Service,WCS)業者雙方相互干擾之疑慮。此一爭議在2012年10月17日美國聯邦通訊委員會(FCC)發布FCC 12-130再審查命令(Order on Reconsideration FCC 12-130,下稱12-130命令)後獲得解決。   使用頻段位於2305-2320MHz與2345-2360MHz之無線通訊服務(WCS)與位於2320-2345MHz頻段的衛星數位音訊廣播服務(SDARS)由於個別之訊號傳輸技術差異大,並且長久以來無法在干擾處理的議題上達成共識,而抑制了無線通訊服務(WCS)於該頻譜上之發展。為實現WCS業者得於該頻段發展行動寬頻業務之承諾,並確保美國大眾能繼續享有高品質的衛星廣播服務,FCC本次針對2010年所頒布之命令(FCC10-82)進行再次修訂與檢討 ,以確立位於2.3GHz頻帶WCS所屬之頻段得發展新興寬頻服務,並促進SDARS地面中繼起器(terrestrial repeaters)之佈署及運作更加彈性化。   12-130命令之頒布,可視為WCS頻帶發展的重要里程碑。該命令除了確保相鄰頻帶之衛星廣播服務(satellite radio)、航空行動遙測技術(aeronautical mobile telemetry)以及位於美國加州所佈署之深空網路(deep space network)地面站其訊號不受干擾以外,FCC更透過制訂各項參數與管理規則,一方面降低WCS營運時對於SDARS接收者可能產生的潛在干擾,另一方面則幫助位於2.3GHz的WCS業者有能力提供固定或行動寬頻服務,以促進WCS業者與SDARS業者和諧共存。   對於FCC最後決定採用修改管制規範方式釋出該頻段以發展行動寬頻服務之舉,FCC主席Genachowski表示,除有助於鞏固美國身為全球發展LTE技術領導者之地位外,更認為命令中的管制障礙排除模式可幫助未來其他頻段的清理或移頻,增加頻譜使用彈性,並有助於達成國家寬頻計畫(National Broadband Plan’s)所設定之「2015年釋出300MHz總頻寬」、「2020年釋出500MHz總頻寬」目標。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP