美國德克薩斯州北區聯邦地方法院於2020年9月10日,駁回德國汽車零組件供應商大陸集團(Continental Automotive Systems)針對高通、諾基亞、夏普及其他電信公司透過Avanci授權標準必要專利(Standard Essential Patents, SEP)模式違反反托拉斯法的訴訟。法院指出,Avanci是由SEP專利技術擁有者組成的專利授權平台,而Avanci繞過零組件供應商,直接與汽車製造商就授權協議進行談判,並未違反反托拉斯法。
按大陸集團係依據《休曼法》(Sherman Antitrust Act)第2條提出反壟斷訴訟,指Avanic及其成員濫用標準制定的壟斷力量,排除其他技術擁有者並提高專利授權費用。對此,法院列舉聯邦第九巡迴法院在FTC v. Qualcomm案的相同看法指出,該行為是屬於Avanic及成員的契約問題,即SEP持有人可以選擇依照公平、合理、無歧視(Fair, Reasonable, Non-discriminatory, FRAND)的契約方式限制SEP授權,但違反此契約義務並不違反反托拉斯法。大陸集團主張SEP持有人違反FRAND授權承諾,欺騙標準制定組織,從而將專利納入產業標準;但即使這種欺騙會將被告的競爭者排除在標準之外,乃是針對競爭者本身而不是對競爭過程的損害,SEP權利人藉由價格歧視(Price Discrimination)合法地將專利價值最大化並不違反反托拉斯法。
另外,原告控訴依據還包括《休曼法》第1條,禁止事業以契約等方式限制競爭。但法院認為Avanci授權模式是與組成公司間協議訂定,該協議並不會阻止成員向非製造端客戶單獨授權。在SEP授權人拒絕與原告進行談判,或僅同意以向汽車製造商授權的相同價格與零組件供應商進行交易,頂多屬於SEP權利人間的個別行動,並未違反反托拉斯法,因而駁回訴訟。
本文為「經濟部產業技術司科技專案成果」
新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。
歐洲議會呼籲尊重網路人權歐洲議會於2009年3月26日,以大多數支持Lambrinidis報告中關於網路上個人自由保護之投票結果,反對法國政府和著作權行業提出的修正案。歐洲議會的態度是「保障所有公民接近使用網路就如同保障所有公民接受教育」,而且「政府或私人組織不能以處罰之方式拒給這種接近使用的權利」。歐洲議會議員要求會員國政府需體認到網路是一個有效增加公民權利義務之特殊機會,就這方面而言,使用網路及網路內容是一個關鍵要素。 這份報告被歐洲議會議員所採用,得以認識到提供安全措施來保護網路使用者(特別是孩童)之必要性,由於使用者可能會因使用網路,而暴露在成為罪犯或恐怖份子的犯罪工具的風險中。報告中提出方案對抗網路犯罪,但同時也要求在安全及網路使用者基本權利保障中尋求平衡點。 此報告否定法國所提之修正案,歐洲議會又再度否決由法國努力推動「網路侵權三振法案」(three strikes file-sharing law)。歐洲議會認為對於所有網路使用者的監測活動及對於侵權者之處罰有違比例原則。歐洲議會亦公開支持「網路權利憲章」(Internet Bill of Rights)以及推動「隱私權設計」(privacy by design)宗旨。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
知己知彼,兩岸研發經費比一比依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。