美國衛生及公共服務部(Department of Health and Human Services, HHS),於2020年6月16日提出「曲速行動(Operation Warp Speed)」,目標是在2021年1月前,提供3億劑具安全有效性的COVID-19疫苗,給所有美國人民使用。參與行動的政府夥伴,包括國家衛生研究院(National Institutes of Health, NIH)、食品藥品監督管理局(U.S. Food and Drug Administration, FDA)、疾病預防管制中心(Centers for Disease Control and Prevention);與多家製藥公司包含嬌生、默克、輝瑞、Moderna、AstraZeneca等,簽訂研究製造及保證收購疫苗的競爭型補助協議,直接由政府需求主導疫苗藥劑的研發、生產與銷售,藉此滿足國家防疫的戰略需求。
曲速行動為政府部門及公私夥伴間的合作計畫,依據美國國會通過《新冠病毒援助、救濟和經濟安全法》(Coronavirus Aid, Relief, and Economic Security, CARES Act),計畫補助資金達100億美元,其中超過65億美元用於生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA),30億美元用於NIH研究。公私夥伴合作項目包括:「加速研發新冠病毒藥物及疫苗計畫」(Accelerating COVID-19 Therapeutic Interventions and Vaccines, ACTIV)、「快速診斷技術計畫」(Rapid Acceleration of Diagnostics Tech program, RADx)等。
曲速行動從100多種疫苗中先行選出14種候選疫苗,由美國政府補助,進行早期臨床實驗,再分次篩選出最具潛力者,進行大規模檢測。透過公私夥伴合作,不僅成功帶動製藥廠商積極研發,也協助候選廠商間彼此競爭、提升製藥能力,進一步反饋研究經驗給最終產出的疫苗成果。
本文為「經濟部產業技術司科技專案成果」
韓國通訊委員會(Korea Communications Commission,KCC)主席Choi See-jung於2010年4月21日宣布韓國政府將推動一項新的「無線網路活化計畫」(comprehensive plans for wireless internet activation),預計在未來五年間投入1兆5000億韓圜,與民間共同合作發展無線網路建設,以搶佔智慧行動領域的發展先機。 因應智慧手機發展速度倍增在政治面上帶來的需求,韓國政府希望透過本計畫能將南韓建設成「智慧行動領域的發電所(powerhouse)」。並據此願景規劃了4個政策目標、10項策略方案。此四個政策目標包括:確保在智慧行動領域的全球競爭力、推動智慧手機的普及與生產應用、營造世界最高水準的無線寬頻網路、強化下世代行動科技的發展與人才培育。 KCC將組成「網路去管制推動小組」(Internet de-regulation promotion team),於4月底開始著手進行包括定位資料保護、用戶識別系統和智慧手機的金流安控等領域的法規檢視與修正工作。 KCC預測能藉此創造12,535個工作機會、促進3,648億韓圜的產值。KCC同時解釋,透過對無線網路的活化應用,支持在各層面的創新應用發展(包括醫療服務、商業活動、教育等領域),此時正是奠定韓國成為行動服務核心業務強國的時機。
奈米技術可能對健康與環境產生危害,專家呼籲應加強檢測與管制幹細胞研究成果被認為將會是未來的醫療主流之一,不過由於這項研究牽涉到敏感的道德與宗教議題,政府對此一研究究竟要採何種立場,在西方國家一直爭論不斷,故最終得以立法方式獲得共識並表明政府政策態度的國家,仍為少數。即使先進如澳洲,亦遲至2002才通過第一套相關的法律-禁止人類複製法(The Prohibition of Human Cloning Act)與人類胚胎研究法(Research Involving Human Embryos Act)。 人類胚胎研究法建立了一套核准體系,對使用人工生殖技術之剩餘胚進行研究者,由國家健康及醫學研究委員會下之胚胎研究核准委員會(The Embryo Research Licensing Committee of the National Health and Medical Research Council)核發許可;該法雖允許使用人工授精的剩餘胚進行幹細胞研究,但並未特別就治療性複製部分予以規範。澳洲政府目前是以行政命令的方式,禁止醫療性複製的研究,此一禁令於2005年4月再度被延長5年。 澳洲眾議院(The House of Representatives)最近以82比62的投票比,表決通過「人類生殖性複製禁止與人類胚胎研究管理修正案」(Prohibition of Human Cloning for Reproduction and the Regulation of Human Embryo Research Amendment Bill 2006),廢止先前的禁令,開放基於醫療目的得製造胚胎進行幹細胞研究,同時明訂所製造的胚胎不得殖入於子宮內,並應在十四天內銷毀,違反本法規定者,最高可處以十五年之有期徒刑。根據規劃,本法將在相關主管機關制訂完成有關卵子捐贈及研究許可申請之相關作業細節規定後之六個月實施。
中國大陸科技部公布參與2013年度科技型中小企業創業投資引導基金階段參股的創業投資機構名單根據中國大陸科學技術部(以下簡稱科技部)、財政部2013年11月8日以國科發計〔2013〕647號公布之<科技部、財政部關於2013年度科技型中小企業創業投資引導基金階段參股項目立項的通知>,確定計有21家創業投資機構參與本年度階段參股之立項項目,計劃資助金額約人民幣8億元。 按「科技型中小企業創業投資引導基金」係中國大陸財政部及科技部為貫徹<國務院實施《國家中長期科學和技術發展規劃綱要(2006至2020年)若干配套政策》>,支持科技型中小企業自主創新,而於2007年7月6日公布<科技型中小企業創業投資引導基金管理暫行辦法>。其中第3條規定:「引導基金的資金來源為,中央財政科技型中小企業創新基金;從所支持的創業投資機構回收和社會捐贈的資金」;第8條第一項前段規定:「本辦法所稱的創業投資企業,是指具有融資和投資功能,主要從事創業投資活動的公司制企業或有限合夥制企業」。 中國大陸政府希冀透過引導基金的協助,鼓勵當地創投業者參與引導基金支持的研發項目,並以「創業投資企業」或「創業投資管理企業」等方式,對於從事科技研發的中小企業提供實質資金協助,其具體鼓勵的方式依前述辦法第5條規定可為階段參股、跟進投資、風險補助等。以本次公布之通知為例,其所稱「階段參股」是指引導基金向創業投資企業進行股權投資,並在約定的期限內退出(參股期限一般不超過5年)。而符合該辦法規定條件的創業投資機構作為發起人,發起設立新的創業投資企業時,可以申請階段參股。 近來我國主管機關為促進經濟發展,不斷思索鼓勵創業、就業之措施,或許從創投面提供實質之協助也是參酌因素之一,其他國家或地區的具體措施及內容似值得我們後續觀察、研究。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現