聯合國教科文組織發布《人工智慧倫理建議書》草案

  聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。

  其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。

  由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。

相關連結
你可能會想參加
※ 聯合國教科文組織發布《人工智慧倫理建議書》草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8578&no=16&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
加州針對18歲以下兒童通過兒童隱私保護法

加州州長Gavin Newsom 早先簽署了《加利福尼亞州適齡設計法》(California Age-Appropriate Design Code Act AB 2273,以下簡稱該法),2023年4月28日,倡議團體與聯邦政府官員提交一份意見陳述以支持該法,預計於2024年7月1日生效;針對提供線上服務、產品給18歲以下加州兒童的企業進行管制。 該法的適用範圍: 1. 倘若企業提供的線上服務、產品或功能符合以下條件,則受該法所規範: (1) 提供服務的對象為兒童(年齡於13歲以下的孩童)之網路服務商。 (2) 所提供之服務包括兒童經常瀏覽的網站,或者確定是廣泛被兒童使用的線上服務、產品或功能。 2. CPRA(California Privacy Rights Act)所規範之「企業」,是位於加州並蒐集加州居民個人資料的營利性組織,其須滿足以下條件之一: (1) 年度總收入超過 25,000,00美元,或是每年單獨或聯合購買、出售或共享100,000名以上加州居民或家庭的個人資料,或者年收入的50%以上來自出售或共享加州居民的個人資料。 (2) 該法不適用於網路寬頻服務、電信服務或實體買賣行為。 一. 規範內容 1. 資料保護影響評估:企業針對所營事業須完成資料保護評估,且必須每兩年自主進行資料安全確認。 2. 最高級別隱私權設置:企業對於兒童使用者,須預設最高等級之隱私權設置及保護。 3. 隱私政策和條款:企業必須簡明的提供隱私政策、服務條款和明確標準,並使用與兒童年齡相符的清晰語言,以便兒童理解語意。  (1) 將兒童依據年紀分為:0至5歲為「早期識字階段」、6至9歲為「核心小學階段」、10至12歲為「過渡階段」、13歲以上為「早期成年階段」。  (2) 定位服務:要求企業在兒童的活動或位置受到父母、監護人或其他消費者的監控或追蹤時,向兒童明確提醒。 該法針對兒童制定嚴謹的法規予以保護,確保兒童個人資料不會在沒有認知的情況下,因使用服務而被蒐集、處理及利用。該法特殊的地方為,對於未成年人進一步區分不同年齡段,若有明確區分出並針對各年齡段進行不同的告知事項設計,將更易使閱讀之未成年人明確了解個資告知內容,應值贊同。

加拿大運輸部發布2025無人機方案,提出建立無人機交管系統等優先項目

  加拿大運輸部(Transport Canada)於2021年3月22日發布「2025無人機方案」(Transport Canada’s Drone Strategy to 2025),概述其對無人機的願景及方案,並提出其至2025年前所應優先關注之項目,以確保無人機安全地整合進現代化航空系統並進入空域中。   為因應無人機產業發展帶來新挑戰及機會,加拿大運輸部列出五點事項做為對總體政策及優先事項之考量,包括: (一)透過安全規範支持創新:相關方案包含為偏鄉地區操作較低風險之視距外操作制定規範、為中度風險視距外操作核發飛行操作許可、在實際操作環境中測試技術,以及核准相關試行計畫,以提供中度風險之視距外操作更多的政策規劃資訊。 (二)建立無人機交通管理系統:包括建立無人機飛行計畫、空域使用請求系統、通訊、導航及空域監管系統、自2021年於偏鄉地區進行無人機交通管理實驗、探索「數位牌照」(digital license plate)用於遠端識別無人機的選項,以作為無人機交通管理系統基礎。 (三)無人機的安全風險:與利益相關人合作釐清機場保安的角色與職責、通訊傳輸協定及突發事件回應期間的工作協調、評估機場威脅及漏洞以了解風險、探索反無人機技術、對未經授權無人機的侵入進行偵測及追踪,以及導入驅逐未經授權無人機的安全框架。 (四)創新推動經濟發展:促進短、中期研發計畫、對先進無人機研發活動尋求合作機會、尋求能為加拿大氣候環境與操作提供資料的優先研發項目、制定方案使新型無人機技術更容易被國際市場接受、針對無人機之營運框架及產業目標進行評估、擬定產業合作策略並促進現有航空經濟框架現代化。 (五)建立民眾對無人機的信任:為增進民眾對無人機的認識及接受度,制定行動計畫、與地方政府共同規劃營運、鼓勵更多的社群參與,並與執法單位持續合作執行安全無人機操作規則。   加拿大運輸部將對本方案定期進行評估並於2025年前完成總體檢視,並公布2025-2030年的無人機發展方案。

.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。   本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。   但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

美國國家安全局發布「軟體記憶體安全須知」

  美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:   1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。   2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。   3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。   搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。

TOP