歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。
本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。
總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。
馬來西亞於2010年6月即通過個人資料保護法,延宕經年,該法終於自2013年底開始正式施行,而數項配套規範亦同步施行。前個資保護部門首長Abu Hassan Ismail則被任命為新設之個資保護專員,受通訊及多媒體部部長之指揮監督。 從規範內容架構觀察,馬國此部個資法之範疇堪稱恢弘,不但包括了諸多的實質行為規定,例如,在行為規範的面向上,馬國個資法要求其所謂的資料使用者(data user) 必須遵守多項個資保護原則並尊重當事人權利;此外,該法亦有不少與個資保護相關之組織及程序規則,例如,該法設有行政救濟法庭,如對個資保護專員之決定有所不服者,即可在此提出救濟。惜該法之適用對象不包括公部門,且在適用情形方面,除排除了純粹因個人或家庭目的而蒐集、處理、利用個人資料外,亦針對諸多情形分別排除該法所設之不同個資保護原則之適用,且更賦予個資保護專員另行指定排除適用情形之權限,因而除將相當程度限制該法影響範圍外,並使該法之適用與發展增加許多不確定之因素。
G20財長會議就跨國企業利潤再分配及全球最低稅賦制批准最終協議2021年10月13日G20第4次財長會議正式批准了數位經濟課稅最終政策協議,確立了136個國家和司法管轄區,應於2023年底前實施跨國企業利潤再分配制及全球最低稅賦制的改革計畫。 有關跨國企業利潤再分配制,以跨國公司平均收入達200億歐元且高於10%利潤率的量化特徵,打破了過往國際稅法以業務型態為依據的課稅權分配基礎。根據協議公報,200億歐元的課稅門檻將在未來8年內下修至100億歐元,以逐步實現公平的數位經濟課稅環境;至於跨國企業母國所在地、子公司所在地之分配比例,將於2022年初公布。 新的全球最低稅賦制,係以全球(相對於境內)為課稅範圍設定15%的標準稅率,針對年收入達7.5億歐元之跨國公司,衡量所在地國之有效稅率與標準稅率,補足稅率之差額以打擊跨國租稅套利。根據協議公報,制度預設8%有形資產與10%工資的扣除額,將於10年內逐步調降,以符合數位經濟低邊際成本的特性;至於有效稅率的計算,預計將於2021年11月公布。 此次最終政策協議的批准,不僅是取得愛爾蘭等原先反對國家的共識,同時確立了新制度計算公式與配套措施的提出時程,顯示出疫情後數位經濟課稅的急迫性再度受到重視。而我國雖積極發展數位經濟,然因目前尚未透過多邊協定框架加入改革計畫,因此在此數位經濟課稅方案確定前,我國如何接軌和因應國際制度將是重要課題。
歐盟執委會提議檢討WEEE法令規範,並修正回收目標歐盟執委會於所公告之電子電機廢棄物回收法令檢視報告(Review of an EU Directive on Recycling Waste Electrical and Electronic Equipment)中建議,對於產品製造商之回收目標規範標準,應從現行概括固定值:每年人均4kg(4kg/capita per year)回收目標,改為變動式比例值:以現行市場商品平均量之65%,作為規範目標並且,由於法令規範課予產品製造商強制回收責任,市場實務上,也出現了產品製造商為了達到WEEE要求規範目標值,轉而向民間回收業者收購「回收憑證(Recycling Certificates)」,並且,因為供需失衡問題,造成回收業者隨意喊價的情形,也多所見聞。 而歐盟執委會為進一步落實環境保護政策,還是打算維持原案,提議對於WEEE規範內容進行檢討修改,並建議各會員國於國內法令增加誘因及鼓勵措施,導引協助產品製造商擴大回收體系、檢視改善回收管理系統,而更具能力對於提高目標規範,能夠落實遵循之。歐盟執委會此項法令修改提議,是否得以真正落實未來立法中,值得再加以觀察。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。