5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。
白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。
此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。
本文為「經濟部產業技術司科技專案成果」
2021年7月30日,澳大利亞聯邦法院做出一項裁定,認為人工智慧(Artificial Intelligence, AI)可作為專利申請案的發明人。 隨著人工智慧的功能不斷演進,人工智慧已經開始展現出創新能力,能獨自進行技術上的改良,此判決中的人工智慧(Device for the Autonomous Bootstrapping of Unified Sentience, DABUS)係由人工智慧專家Stephen Thaler所創建,並由DABUS自主改良出食品容器與緊急手電筒兩項技術。 Thaler以其自身為專利所有人,DABUS為專利發明人之名義,向不同國家提出專利申請,但分別遭到歐盟、美國、英國以發明人須為自然人而駁回申請,僅於南非獲得專利,此案中澳大利專利局原亦是做出駁回決定,但澳大利亞聯邦法院Beach法官日前對此作出裁示,其認為1990年澳大利亞專利法中,並未將人工智慧排除於發明人之外,且專利並不如著作權般強調作者的精神活動,專利更重視創造的過程,其認為發明人只是個代名詞,其概念應具有靈活性且可隨著時間演變,故其認為依澳大利亞專利法,人工智慧亦可作為專利發明人。 該法院的裁定雖是發回澳大利亞專利局重新審核,且澳大利亞專利局仍可上訴,因此DABUS是否能順利成為專利發明人尚有變數,但此案對於人工智慧是否可為發明人已帶來新一波的討論,值得業界留意。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本公布新創事業與廠商合作之指針草案,統整雙方不對等契約關係之問題並提出改善建議日本經濟產業省、公平交易委員會及特許廳於2020年12月23日發布「Startup與廠商合作之相關指針」(スタートアップとの事業連携に関する指針)草案,並自同日起至2021年1月25日止向外徵求公眾意見。近年,日本國內一方面看重新創事業與大型企業合作所帶來的優勢;另一方面,在此種合作關係下,雙方的契約關係亦浮現如名為共同研究、卻由大型企業方獨占專利權等問題。基此,配合2020年4月未來投資會議的決議要求,統整新創事業與大型企業間不對等契約關係的問題與提出改善建議,並參考同年11月公平交易委員會所發布的「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),擬定本指針草案。 本指針主要著眼於新創事業與企業間的保密協議(Non-disclosure agreement, NDA)、概念驗證(Proof of Concept, PoC)契約、共同研究契約與授權(license)契約等四種契約類型。除了統整包含訂約階段在內的各種問題實例、以及日本獨占禁止法(私的独占の禁止及び公正取引の確保に関する法律)對此的適用現況外,亦提出了相應的改善與解決方案。舉例而言,指針草案指出,新創事業可能會被合作廠商要求對其公開營業秘密,卻未能簽訂保密協議。對此,合作廠商即可能構成獨占禁止法上濫用其優勢地位之行為。會造成此狀況發生的實務情境,可能為合作廠商承諾事後會簽署保密協議,但要求新創事業先行揭露其程式的原始碼等營業秘密等。而原因則主要包含新創事業缺乏足夠法律素養(literacy)、以及有關開放式創新的相關知識不足等。基此,指針提出改善方案,例如,締約前新創事業即先行區分出可直接向契約他方揭露的營業秘密、得透過締結NDA約定揭露之營業秘密、以及不得揭露之營業秘密等;締結NDA時,應盡可能具體約定營業秘密的使用目的、對象及範圍,並且考量到通常難以舉證廠商違反保密協議,因此不建議揭露攸關新創事業核心能力(core competence)的營業秘密。
歐盟發布《歐洲資料治理規則》草案歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。 依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。
加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。