5G汽車協會發布《道路使用者保護白皮書》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年8月24日發布「弱勢道路使用者保護白皮書」(Vulnerable Road User Protection),點出目前道路交通安全對相關道路使用者保護不足,同時揭示未來車聯網(V2X)可提供整體用路人更安全之道路交通環境。

  白皮書指出,道路安全是交通政策關鍵,應透過科技技術與政策制定,共同實現道路安全目標。而根據目前統計數據,弱勢道路使用者(Vulnerable Road User,以下簡稱VRU),包含:「行人」、「騎自行車者」、「騎電動車者」、「道路施工者」、「輪椅使用者」及「滑板或是單輪車使用者」,其占交通事故之傷亡比例最高,幾乎超過半數之死亡人數均為VRU,未來更可能因環境或與健康因素,使道路交通使用者數量不斷提升,對VRU之保護將成為未來各國交通之關鍵。

  技術層面,則是車輛感測器偵測VRU、路側設備(Roadside Unit, RSU)、行動邊緣計算技術(Mobile Edge Computing, MEC)等,並進一步應用於車聯網下之不同案例情況:(1)高度風險區域:例如車輛進入行人密度極高的地區,透過感測器發出警訊,以即時警惕人車彼此存在,降低視線死角之事故發生率。(2)VRU與車輛透過裝置溝通:如車輛與VRU之間透過手機等設備傳輸相關資料並通訊。(3)車輛透過安全演算系統與VRU及各項設施交換訊息:此項涉及車聯網通訊應用下,車與車(V2V)和車與交通基礎設施(V2I)通訊,透過C-V2X PC5通訊技術軟體,使車輛、基礎設施與VRU之隨身電子設備之間得以進行通訊,降低事故碰撞發生。

  綜上,未來應建立國際通用的車聯網之弱勢道路使用者保護標準,而非因區域而不同之標準,如目前美國汽車工程師協會之個人安全訊息標準(Personal Safety Messages, SAE PSM)及歐盟電信標準協會之弱勢道路使用者分布(Vulnerable Analysis Mapping , ETSI VAM),兩者在保護上即有所差異。VRU之保護服務是未來車聯網應用之關鍵與道路交通安全核心目標之一,相關系統與感測技術亦在不斷提升,未來更能融合感測器技術,並預測行人可能路徑,將全面提升道路安全。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 5G汽車協會發布《道路使用者保護白皮書》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8590&no=67&tp=5 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
英國政府擬限制18歲以下孩童於社群軟體按讚功能

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於今(2019)年4月15日發布「合適年齡設計:網路服務行為準則」(Age appropriate design: a code of practice for online services)諮詢報告,針對18歲以下孩童使用網路服務所涉及個人資料之相關議題提出遵循標準,要求網路服務提供商應受遵循以保障孩童隱私資訊。   本次諮詢報告主要針對網路服務如何適當確保孩童個人資料,同時符合歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)以及《隱私及電子通訊規則》(Privacy and Electronic Communications Regulations, PECR),若網路服務提供商未依循該行為準則,將很難證明符合GDPR、PECR規定,ICO亦採取監管措施(regulatory action),包含警告、譴責、執行通知、罰款等。於諮詢報告中,臚列涉及個人資料事項,包括資料共享、地理定位(geolocation)、家長監控(parental controls)、輕推技術(nudge techniques)、默認裝置(default settings)、側寫(profiling)等多達16項遵循標準,其中輕推技術引發抑制網路科技發展、過度監管爭議。   所謂「輕推技術」是指專為引導用戶或鼓勵用戶決策時可以點選之程式以表示用戶想法,簡而言之Facebook、Instagram按「讚」功能、社群軟體Snapchat「Streaks」互動功能,或是新聞網頁常見「是」或「不是」選擇性問題視窗等即是輕推技術應用。由於輕推技術之設計會蒐集用戶瀏覽網頁習慣,甚至透露其個人性格、生活狀態給廣告商或社群媒體等。   諮詢報告指出,依據GDPR前言第38點規定,因孩童對於其個人資料處理之可能風險、結果及相關保護措施及其權利認知較低,同時依GDPR第5條規定個人資料之蒐集處理與利用,對資料主體者應為合法、公正及透明(lawfulness, fairness and transparency)。但輕推技術的運用將會促使資料主體者更容易地提供其個人資料,同時,尤其會誘導兒童去選擇隱私保護較低的選項設定或花費更多時間在這些服務上,而此一技術之運用正是利用資料主體者之心理偏差(psychological bias),而違反了公平與透明原則。因此諮詢報告書要求網路服務提供商應主動限制孩童使用輕推功能。ICO於諮詢文件更詳細依0-5歲、6-9歲、10-12歲、13-15歲、16-17歲不同年齡層限制輕推技術應用之程度,或在何種情況須有家長陪同,以保障孩童隱私。   此項標準引來正反兩派意見,主張自由市場(free market)人士批評,認為有過度監管之嫌並阻礙科技發展,輕推技術本身不是問題,而是在於蒐集個人資料後要做那些運用,同時要如何執行限制技術之應用亦將是問題所在。而贊成者認為廠商如提供網路服務給所有年齡層時,應有特別措施以保護不同年齡層之人,因此對於孩童與成人間之監管程度應有區別。該諮詢報告於今(2019)年5月31日截止公眾諮詢階段,並預計2020年初施行該行為準則。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

日本公平交易委員會公布資料市場競爭政策檢討會報告書,提出建構資料市場公平競爭環境之政策建議

  日本公平交易委員會(公正取引委員会)於2021年6月25日發布關於資料市場競爭政策檢討會(データ市場に係る競争政策に関する検討会)報告書。所謂資料市場,不僅指資料從產出、蒐集、整理儲存(蓄積)、加工、分析到利用等各階段的交易,尚包含向終端使用者提供相關商品或服務。其類型包含企業經營所產出的「產業資料」(産業データ),以及與個人相關的「個人資料」(personal data,原文為パーソナルデータ)。近年來,數位平台型業者參與資料市場、活用資料經營相關商業活動的情形漸增。同時,資料不同於傳統交易客體,具備以下特徵:(1)技術上容易複製;(2)無法建立排他性佔有;(3)需透過累積與解析方能創造其價值;(4)可藉由累積使用資料持續優化產品機能。而累積大量資料的數位平台業者,亦可能藉此形成獨占、寡占、排除其他競爭者等。   基此,本報告書針對此一競爭秩序現況,提出以下建議: 建構鼓勵新業者加入資料市場的機制:應充分考量各潛在參與者之需求,同時留意利用資料之事業退出市場經營時,不應對使用該事業服務的個人造成不利益。 針對產出資料之行為建立獎勵機制,同時促進業界自由且易於取用資料。 區分各企業經營共通事項之協調領域、以及企業間各自專業化經營之競爭領域。就前者提供共通性指引與開放行政保有資料供利用,對後者則須管制妨害公平競爭之行為。 確保資料可攜性,與不同系統間的互通性(interoperability,原文為インターオペラビリティ),讓使用者容易轉換其所利用的平台服務。 優化關於個資利用的說明義務內容,尤其針對平台在不知情下蒐集資料的情形,應額外規範業者採取相應配套措施,避免造成當事人不利益。 就數位平台形成的市場寡占與資料獨占蒐集問題,可考量採取令其他業者能公平取用資料之措施。

日本內閣府研議「網路資訊安全判斷基準草案」並將作為未來機關處理共同標準

  日本內閣府網路安全戰略本部(サイバーセキュリティ戦略本部)於2017年7月13日第14次會議中提出對2020年後網路安全相關戰略案之回顧(2020年及びその後を見据えたサイバーセキュリティの在り方(案)-サイバーセキュリティ戦略中間レビュー-),針對網路攻擊嚴重程度,訂立網路安全判斷基準(下稱本基準)草案。對於現代網路攻擊造成之嚴重程度、資訊之重要程度、影響範圍等情狀,為使相關機關可以做出適當之處理,進而可以迅速採取相應之行動,特制訂強化處理網路攻擊判斷基準草案。其後將陸續與相關專家委員討論,將於2017年年底發布相關政策。   本基準設置目的:為了於事故發生時,具有視覺上立即判斷標準,以有助於事故相關主體間溝通與理解,並可以做為政府在面對網路侵害時判斷之基準,成為相關事件資訊共享之體制與方法之基準。   本基準以侵害程度由低至高,分為第0級至第5級。第0級(無)為無侵害,乃對國民生活無影響之可能性;第1級(低)為對國民生活影響之可能性低;第2級(中)為對國民生活有影響之可能性;第3級(高)為明顯的對國民生活影響,並具高可能性;第4級(重大)為顯著的對國民生活影響,並具高可能性;第5級(危機)為對國民生活廣泛顯著的影響,並具有急迫性。除了對國民及社會影響,另外在相關系統(システム)評估上,在緊急狀況時,判斷對重要關鍵基礎設施之安全性、持續性之影響時,基準在第0級至第4級;平常時期,判斷對關鍵基礎設施之影響,只利用第0級至第3級。   本次報告及相關政策將陸續在一年內施行,日本透過內閣府網路安全戰略本部及總務省、經濟產業省與相關機構及單位之共同合作,按照統一之標準採取措施,並依據資訊系統所收集和管理之資料作出適當的監控及觀測,藉由構建之資訊共享系統,可以防止網絡攻擊造成重大的損失,並防止侵害持續蔓延及擴大,同時也將為2020年東京奧運會之資訊安全做準備。我國行政院國家資通安全會報目前公布了「國家資通安全通報應變作業綱要」,而日本以國民生活之影響程度標準列成0至5等級,其區分較為精細,且有區分平時基準及非常時期基準等,日本之相關標準可作為綱要修正時之參考。

TOP