世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年12月7日發布2020年世界智慧財產權指標報告(World Intellectual Property Indicators 2020, WIPI 2020)。WIPI年度報告蒐研分析150個國家及地區的智財統計資料,作為商務人士、投資者、學界和創業家參考指標。該份報告顯示,全球的商標與設計專利的申請活動成長約5.9%和1.3%,然而受到了中國專利申請量下降的影響,2019年全球專利申請下降3%,這也是近10年來首度下降;若扣除中國不計,2019年全球專利申請數量成長2.3%。
該份報告除了彙整國際整體數據以外,依專利、商標、工業設計、植物品種、地理標示等不同主題分別統計。在專利部分,中國大陸國家知識產權局、美國專利商標局分別為收到專利申請提交數量之前兩名;接續為日本、韓國和歐盟。這五大智財當局合計占全球總數之84.7%。其中韓國、歐盟和美國申請數量均有成長,中國大陸申請數量下降達9.2%,亦為中國大陸24年來首度下降,報告說明其因為中國大陸改善申請案結構和申請品質之故,致中國大陸國內公民之申請量減少10.8%,而國外申請量仍保持成長。
另外在商標部分,受理申請數量最多之前六個國家分別為中國、美國、日本和伊朗和歐盟;而2018年到2019年間受理申請增加幅度最多者為巴西、越南、伊朗、俄國和土耳其。據估計,2019年全球有效商標註冊量為5820萬,較2018年成長15.2%,且中國就囊括約2520萬,其次為美國的280萬和印度的200萬。針對中國大陸商標和專利申請數量為世界之冠,引起全球關注,美國專利商標局(USPTO)亦在2021年1月13日發布研究報告,指出中國大陸商標和專利申請案數量可能源自政府補貼或其他非市場因素的影響;其中又以政府補貼為刺激商標與專利申請案件數增長的最大可能原因。而這些非市場因素的商標及專利申請案件可能誤導世界對中國大陸創新能力的評估。
在工業設計(Industrial designs)方面,2019年全球提交136萬件設計專利申請,其中104萬件為工業設計;而中國大陸的工業設計申請量就囊括約71萬件。若以類型區分,和家具有關的設計專利比例為全球9.4%,其次是服裝(8.1%)以及包裝和容器(7.3%)。植物品種(Plant varieties)部分,中國大陸智財當局於2019年收到了7834種植物新品種申請,較2018年成長36%,同時也占全球植物品種申請的三分之一以上。地理標示(Geographical indications)部分,截至2019年和葡萄酒及烈酒有關的地理標示約為全球地理標示的56.6%,其次是農產品/食品(34.2%)和手工藝品(3.5%)。
本文為「經濟部產業技術司科技專案成果」
美國雖將能源列為國家長期的能源政策目標,自1990年代後期,亦投入核能的安全性、環境建置及研發補助等,但最近因將重點放在其他替代性能源的開發,因此在核能方面的計畫稍微減少,尤其自1979年美國三哩島核電廠(Three-Miles Island Nuclear Generating Station)發生事故後,美國三十年來未再興建任何核電廠。但由於核能發電的高效率與不會排放二氧化碳的低污染,因此美國政府將之列為重點發展項目,強調美國政府的能源政策是要發展任何可能的能源,包括合核能,以提升在全球潔淨能源的競爭優勢。 美國總統歐巴馬表示,為了維持能源供需的穩定,以及避免氣候的惡劣變遷,有必要重啟美國核能產業,持續提高核能的供應量。因此於2011年12月經核子管理委員會(Nuclear Regulatory Commission)通過、2012年2月再次於投入核電廠的興建,於喬治亞洲Vogtle核電廠核准興建兩座新的核能反應爐,並透過成本分擔協議(cost-share agreement)投入2億美元,協助設計認證及許可。 此外,並於同年3月宣布投入4. 5億美元於五年內支持兩座自製的小型核能反應爐(small modular nuclear reactor,SMR)的設計、認證及核准,希望能輸出這些自製的反應爐,提升全球潔淨能源的競爭力。這些反應爐約只佔核能廠的三分之一面積,具有安全的建築設計,小型反應爐能在工廠內製造,並運輸到定點安裝,能節省成本及建造的時間。且其最理想的地方在於其體積小,能使用在小型智慧電網級一些無法容納大型反應爐的地方,其運用能更有彈性,能增加經濟效益。 國政府希望透過與私人企業的合作,帶領美國在全球核能科技及製造的領先地位。因此希望能源部希望此計畫能經核子管理委員會的許可,此一小型核能反應爐的計畫總金額為9億美元,透過與私人企業成本分擔的協議,其中50% 由國會撥款,另50%則由私人企業投資,並於2022年商業化,取得在全球潔淨能源的競爭優勢地位。
美國聯邦貿易委員會(FTC)持續開鍘違約揭露用戶個資的業者美國聯邦貿易委員會(Federal Trade Commission,FTC)根據《健康違規通知規則》(Health Breach Notification Rule,HBNR),於2023年2月1日和3月2日分別對GoodRx Holdings Inc.公司和BetterHelp, Inc.公司提出擬議命令(Proposed order)。擬議命令指經由行政機關調查案件後提出的改善建議,且經聯邦法院批准後對被調查公司生效。這兩件案例是FTC於2021年後擴大《健康違規通知規則》適用範圍從傳統的健康產業及於網路行業後的首次執法。GoodRx Holdings Inc.公司提供藥物資訊平台與折扣訊息;而BetterHelp, Inc.公司提供遠距醫療服務。兩者在2017到2020年間均向他們的消費者聲明,將妥善保護所蒐集之個資,然而卻轉手將取得個資揭露給Facebook、Snapchat和Google等第三方公司,用來進行目標式廣告的投放。 FTC對GoodRx的擬議命令要求其停止向第三方揭露使用者的個人資料,並處以支付150萬美元的罰鍰。對BetterHelp, Inc.的命令除要求其停止共享使用者的個人資料外,更要求BetterHelp, Inc.向網站的使用者進行退款,退款總額上限高達780萬美元。FTC在擬議命令中建議:涉及敏感性健康資料的事業負責人,除了需要重新檢視目前持有資料的隱私和安全性外,最好能建立一套完整的資料管理流程。流程包括對當事人充分說明蒐集利用目的、取得當事人完整的知情同意、制定完整的個人資料管理及保存銷毀程序、限制員工對資料的存取權限等等。最後也最重要的是要「信守承諾」,這兩個案例中的業者都是違反了自己當初對使用者的承諾,最終才導致被處罰的結果。
美國國防部5G戰略因應5G通訊技術快速發展與關鍵應用逐漸普及之趨勢,美國國防部於2020年5月2日由部長批准「國防部5G戰略」(Department of Defense 5G Strategy,以下簡稱5G戰略);同月發布之公開版(unclassified)5G戰略,為美國軍方第一份公開發布的5G戰略性指導文件,主要內容包含指出國防部面對5G帶來的挑戰、設定5G技術發展目標、擬定5G發展行動計畫(lines of effort)等,以確保美國在軍事與經濟上的優勢地位。 5G戰略指出,5G技術對於維持美國軍事與經濟優勢至關重要,為關鍵戰略性科技(critical strategic technology)。5G技術為產業與軍事帶來重大變革的契機,同時也帶來對資通安全的挑戰,特別是由於美國潛在的競爭對手國家,正試圖在美國的關鍵合作夥伴國家的5G市場占據主導地位,使得5G基礎建設供應鏈成為競爭對手利用有害元件、惡意軟體或非法存取等方式入侵美國與其合作夥伴的破口,最終將損害美國的國家安全與利益。 因此美國國防部將鼎力協助美國與其合作夥伴提升5G技術力、提高對5G的風險意識至國安層級、開發保護5G基礎設施與技術之措施。具體行動計畫包含:一、藉由大量的實驗場域驗證5G應用,推動技術發展;二、掌握5G資安威脅情報與威脅,評估、識別資安風險採取必要措施,並採取零信任(Zero Trust)反覆驗證之資安模式;三、積極加入5G技術相關標準訂定與規劃5G國防政策;四、吸引國際組織、國家與相關產業的合作夥伴,積極溝通協調以維持美國與合作夥伴間的共同利益,協助美國的盟友與合作夥伴識別5G風險。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。