著名英國科學研究分析公司科睿唯安 (Clarivate)於2021年2月18日公布《2021年商標生態系統報告》,此報告由科睿唯安委託Vitreous World 於2020年底時分別對英國、美國、德國、義大利、法國、中國大陸以及日本等七個國家共300位專業顧問進行線上訪問,了解商標專業人士對於各國商標價值、商標保護以及技術優化之相關見解為何。此份報告之主要發現如下:
今全球產業趨勢已進入知識創新時代,企業欲保持競爭力需善用智財權以維持內部能量,且為防免智財侵權威脅並把握新市場藍海,須由企業全體成員齊心關注努力,而不僅是商標部門人員的責任,管理階層更應了解企業智財狀況,適時更新智財管理與布局策略,增強市場地位。
FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。 過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。 FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。
印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案近年來許多先進國家的藥廠或是生技公司紛紛到生物資源豐富的國家從事生物探勘活動,希望可以尋找合適的生技產品候選者 (candidate) ,也因此產生許多不當佔有的生物盜竊 (biopiracy) 事件。 由於印度本身在 2002 年專利法修正時,特別規定生技發明之專利申請者若使用生物物質 (biological material) ,應揭露其地理來源 (source of geographical origin) ,未揭露其來源地或提供錯誤資訊者,則構成專利撤銷之理由; 2005 年的專利法修正的重點之一為「加強專利授予前異議 (pre-grant opposition) 機制」,意即未揭露生物物質之來源地或提供錯誤資訊者,或者申請專利之權利內容含有傳統知識者,可提出異議之事由。 目前國際間針對是否應強制規定申請人應揭示其來源地等仍無共識。從 2001 年的杜哈發展議程的談判會議結果即可知,由於該談判採取 「單一承諾( Single Undertaking )」模式且可從不同議題間相互掛勾,加上開發中及低度開發會員採取結盟方式來壯大談判立場,在某些關鍵議題與美國、歐盟等主要會員國形成抗衡局面。 開發中國家對於 TRIPs 第 27 條第 3 項 b 款的審議特別在乎,認為 TRIPs 協定應該修訂應納入上述的揭露需求外,還必須提供事先告知且同意 (prior informed consent) ,以及因該專利而獲取的利益與來源地分享之證明。 因此,印度提出修正 TRIPs 協定的建議,強制會員國必須改變內國法律,規定專利申請者必須揭露其發明所使用的生物物質來源,並希望能在今年 12 月香港部長會議裡討論。
英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。 該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。 Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。 目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。