科睿唯安 (Clarivate)公布2021年商標生態系統研究報告: 全球視野下的商標價值、保護及技術優化

  著名英國科學研究分析公司科睿唯安 (Clarivate)於2021年2月18日公布《2021年商標生態系統報告》,此報告由科睿唯安委託Vitreous World 於2020年底時分別對英國、美國、德國、義大利、法國、中國大陸以及日本等七個國家共300位專業顧問進行線上訪問,了解商標專業人士對於各國商標價值、商標保護以及技術優化之相關見解為何。此份報告之主要發現如下:

  1. 全球商標侵權狀況持續上升中:相較於2017年共有74%受訪者提及曾遇到商標侵權案件、2018年為81%、2019年則有85%。本次調查時竟有高達89%受訪者表示常經手商標侵權案件,且逾半數者表示,其企業在遭遇商標侵權後更改了品牌名稱,此類狀況於日本特別嚴重。
  2. 高階主管態度影響企業獲利機會:89%受訪者表示,企業高階主管人員對於智財問題無意識或不予關注時,組織往往無法利用商標或其他智財權利以適時抓緊商機、進入新市場或建立新合作關係。其中亦有五分之一受訪者提到,其企業董事會相關成員完全不參與企業智財議題討論。
  3. 社群媒體名稱成為許多商標侵權管道的起源:此次共有50%受訪者表示,社群媒體名稱成為首要的商標侵權源頭;但中國大陸受訪者有73%表示,網域名稱仍為商標侵權常見管道。

  今全球產業趨勢已進入知識創新時代,企業欲保持競爭力需善用智財權以維持內部能量,且為防免智財侵權威脅並把握新市場藍海,須由企業全體成員齊心關注努力,而不僅是商標部門人員的責任,管理階層更應了解企業智財狀況,適時更新智財管理與布局策略,增強市場地位。

相關連結
你可能會想參加
※ 科睿唯安 (Clarivate)公布2021年商標生態系統研究報告: 全球視野下的商標價值、保護及技術優化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8619&no=64&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

何謂「AI創作物」?

  日本智慧財產戰略本部之「次世代智財系統檢討委員會」於2016年4月18日公布的報告書針對「AI創作物」有諸多討論,截取部份內容如述。   以現行著作權法來看,自然人創作產生的創作物,受到著作權保護並無疑問。倘若係自然人利用AI做為道具產出的創作物,若具備(1)創作意圖;(2)創作貢獻,兩種要件,亦得取得權利。然而,若該創作物僅透過人類指示,過程係由AI自主生成,此時該創作物即屬於AI創作物,目前非屬著作權法保護之範圍。惟上述三種情況在外觀辨識上極為困難。換言之,人類創作物與AI創作物之界線已愈趨模糊。   AI創作物可能具備多種態樣,包括:音樂、小說等,甚至包括新技術及服務的生成。以音樂、小說為例,由於日本著作權法係以「創作保護主義」為前提,只要該創作物完成時具有原創性,即受著作權保護,AI的特性可能會造成該當著作權保護之著作物數量遽增;若AI產生的成果屬於技術或服務,以專利審查需具備新穎性、進步性等要件而言,得獲取專利權難度相對比較高。   而日本政府在討論AI創作物是否具有「保護必要性」,主要係以智財權「激勵理論」出發,該理論核心在於保護人類的投資行為應獲得合理報酬,才有續行創作的動機。

德國提出「對外貿易條例」修正草案

  德國聯邦經濟與能源部(Bundesministerium für Wirtschaft und Energie,BMWi)在2017年7月提出「對外貿易條例」(Außenwirtschaftsverordnung)修正草案,以規定基於德國的公共政策安全或基本安全利益,對於外國人(或企業)收購國內公司,在必要時得予以禁止或增加強制條件。   如果交易完成後(一)歐盟之外的收購方將直接或間接持有目標公司25%以上的表決權以及(二)出於公共秩序或安全原因有必要採取上述措施,聯邦經濟與能源部可禁止對德國公司的收購交易。   該法修正草案亦進一步規定,聯邦經濟能源部將在本法律框架下對於涉及以下(技術)領域相關企業併購案之合約談判的各方進行審查程序,以確保國家實質安全利益: 部分能源電力領域,例如:電廠控制技術、電網工程技術、電廠系統或系統操作的控制技術(供電、供氣、燃油或集中供熱等)。 部分用水領域,例如:用水控制、調配或自動化技術(飲用水供應或污水處理設施)。 訊息技術和電信軟體領域,例如:語音和數據傳輸、數據儲存系統及處理系統)。 金融和保險部門、其運營的軟體或現金系統。 涉及醫療保健軟體部門或醫院管理訊息系統、處方藥和實驗室訊息系統的運行等領域部分。 涉及運輸和交通領域內的控制系統、工廠或設施的運行、航空運輸、乘客和貨物系統、鐵路運輸、海運和內河運輸、公路運輸、公共交通或後勤物流等領域。

美國為遏止專利濫訟通過創新法案(The Innovation Act of 2013)

  美國眾議院今年(2013)12月5日通過創新法案(The Innovation Act of 2013,H.R. 3309),主要目的在於填補美國發明法(Leahy-Smith America Invents Act,AIA)對於遏止專利濫訟之不足。創新法案中達成立法目標之核心手段主要有以下五個方向。 1.限縮提訴要件,要求提起專利訴訟,必須說明遭侵權之商品以及遭侵權之情形,特別是針對專利侵權之因果關係的說明,以不實施專利主體(Non-practice Patents Entity,NPE)不生產製造專利產品之特性遏止其專利濫訟。 2.訴訟費用的轉移,將相關成本轉移至敗訴方,並加諸合理之賠償費用。直接以訴訟成本之轉嫁來影響訴訟意願,然而此舉是否造成真正之專利所有者保護自身專利之障礙仍須觀察個案。 3.延遲證據開示,避免證據開示過早影響判決之結果。 4.要求專利所有者持續針對所有之專利進行資訊更新,使專利所有權透明化,以揭露NPE藉由空殼公司進行濫訟之行為。 5.創新法案另試圖使專利產品之實際製造商代替消費者面對專利侵權時相關產品之訴訟。   而眾議院通過創新法案的同時,參議院也有相類似的平行立法提案,稱為專利透明化與改進法案(The Patent Transparency and Improvement Act of 2013,S. 1720)。比較參眾兩院之法案版本後,可以發現兩者立法目的以及採取的手段均類似,主要都集中在於資訊的透明化以及訴訟成本的轉嫁,試圖藉由除去專利訴訟有利可圖的情形遏止專利濫訟的現象,但是參議院版本之法案是否真的能夠達到遏止專利濫訟之情形受到各界更多的爭議。

TOP