當網路梗圖爆紅 潛藏的著作權侵權疑慮

  今(2021)年一月中旬在美國總統就職典禮中,由法新社(Agence France-Presse, AFP)攝影記者Brendan Smialowski捕捉到參議員桑德斯(Senator Bernie Sanders)戴著連指手套、雙手環胸在場邊靜候的攝影作品,意外受到網友關注並製作成各式梗圖迷因(meme) 而爆紅。然而,在這些成千上萬的梗圖創作中,除非獲得原創作者的允許或落在著作權法的合理使用範圍,否則皆潛在隱藏了著作權侵權之可能性。

  檢視本事件,將該攝影著作去背以取得「寧靜而坐的桑德斯圖像」,而將該去背圖像合成於各式情境場景,甚至架設梗圖產生器網站供其他網友上傳照片以製作更多衍生梗圖。多數在網路上分享之創意梗圖為博取網友一笑為目的,尚屬於著作權合理使用之範圍,然而當藉由該去背圖像或衍生梗圖進行廣告或促銷之用途,如將該去背圖像或衍生梗圖成為商品行銷元素、多次使用於廠商的社群媒體貼文中,將可能落入商業使用之爭議。桑德斯本人便將該去背圖像製作成運動衫進行慈善募款,儘管所得為慈善用途,但仍屬於商業使用;此外,該去背圖像未將原創進行任何轉化而直接轉印在衣服上,亦無法主張合理使用。儘管存有侵權疑慮,現階段攝影師似乎樂見其攝影作品成為各式梗圖而瘋傳,不過當開始有人藉由其攝影著作賺取金錢,情境可能就有所不同,攝影師將可能進行追究。

  回顧過去類似將網路梗圖迷因進行商業使用,而產生著作權侵權爭議之案件。早如2009年美聯社(Associated Press)記者所拍攝前美國總統歐巴馬競選活動之肖像特寫,遭到前衛街頭塗鴉藝術家費爾雷(Shepard Fairey)在未經授權使用之前提下,將該攝影著作改作名為《希望(Hope)》之海報與各式商品並進行販售,美聯社因而對費爾雷提出侵權訴訟,儘管最後雙方和解,但兩者在過程中皆投入不少訴訟資源。其他案例如2019年體育流行文化媒體Barstool Sports與社群媒體Jerry Media等,皆因藉由擷取網路梗圖吸引網路社群觸及以進行消費等商業行為,遭到原創者檢舉而被迫刪除歷年貼文。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 當網路梗圖爆紅 潛藏的著作權侵權疑慮, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8627&no=64&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
生物識別技術走進零售業

  近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。   目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。   不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。

『採購單位執行下單評估與廠商智慧財產管理要件之關連性』研究調查

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

網路中立管制在美國與歐盟的新發展

TOP