美國白宮於2021年3月31日發布「美國就業計畫」說明文件(FACT SHEET: The American Jobs Plan),針對美國當前所面臨基礎建設老舊、失業率攀升、氣候變遷與來自中國的技術競爭等問題,預計在未來八年內每年投資約GDP的1%,共投入約2兆美元(約合新台幣56兆元)於修復與升級國家基礎建設、振興製造業、投資基礎科學研究、支持供應鏈、推動能源轉型、幼兒教育及長照醫療等項目上。
本說明文件指出,雖然美國為世界上最富裕的國家,但許多基礎建設都逐漸變得老舊或不合時宜,部份人民仍無法享有高速網路與價格可負擔的房屋,而在疫情的衝擊下不僅導致工作機會喪失,更威脅到國家經濟安全。除此之外,美國在科技研發、製造與人才培育上開始落後於最大的競爭對手,顯示政府有必要加快在基礎建設與科技研發的投資,以重建美國的國家競爭力並創造更多的就業機會。
針對投資基礎建設部分,包含交通基礎建設如修復高速公路、橋樑,並升級港口、機場及運輸系統,並改善飲水、電力與網路布建,提供全體人民可負擔、可靠的高速寬頻服務;除了提高基礎建設在面對氣候變遷危機時的韌性,也提供美國人民更安全、可靠、便利的生活條件。在更新基礎建設的同時,將採用符合永續性及創新性的建築材料,並優先使用在美國製造與販售的零組件,以支持國內產業與創造就業機會。
而在投資科技研發部分,相對於中國大陸正大力投資於研發,其研發支出為世界第二,美國在投資科技研發占GDP比率卻持續下降,為了支持研發團隊克服高度創新(high-innovation)技術的障礙,有必要提高對於國內研究人員、實驗室及大學院校的投資。因此白宮呼籲國會支持國家科學基金會(NSF)投資500億美元設立技術局(technology directorate),用於整合國家研究資源,投入半導體及高級通訊技術、高級能源技術及生物技術的研發,並預計投資400億美元於全國實驗室研究設施與網路的升級。
除此之外,白宮規劃投資350億美元於研發克服氣候變遷危機的技術解決方案,包括開發減少排放和建立氣候適應力的新方法,並呼籲國會投資100億美元於傳統黑人大學(HBCUs)、弱勢族群教育機構(MSIs)的科技研發以避免種族與性別落差,投資200億美元於區域創新中心及社區再生基金,向國家標準技術協會(NIST)投資140億美元推動產官學合作研發,以及規劃310億美元用於中小企業信貸、創投及研發資金,特別是地區型的小型孵化器及創新聚落,以支持有色人種及弱勢族群的新創事業成長。
本文為「經濟部產業技術司科技專案成果」
隨著地球人口增加,糧食問題日益嚴重,而土地資源有限及氣候變遷也影響著產量。除了開源—提升糧食產量之外,如何節流—減少糧食浪費,也成為各國重要課題。日本為因應聯合國永續發展目標(SDGs)中的具體目標12.3:「在2030年之前,達到減少生產供應鏈糧食損失,同時掌握消費端食物浪費流向。」並改善國內食物大量損耗的問題,參議院於2019年5月24日表決通過由跨黨派議員聯盟提出的《減少食品損耗促進法》(食品ロス削減推進法)。有鑑於日本的循環型社會法制體系中,已有以實現食品環保3R(Reduce, Reuse, Recycle)為目的之《食品循環利用法》(食品リサイクル法),《減少食品損耗促進法》要求中央及地方政府在依既有相關法規,實施食品廢棄物減量時,也應考量本法之目的和內容,適當地推行措施。 《減少食品損耗促進法》將「減少食品損耗」定義為:「防止仍能食用的食品不被廢棄之社會性措施。」並定義「食品」 係除《醫藥品、醫療機器等法》第2條第1項所稱之「藥品」、同條第2項所稱之「醫藥部外品」及同條第9項所稱之「再生醫療等製品」以外之飲品及食物。 依《減少食品損耗促進法》之規定,未來內閣府將設立名為「減少食品損耗促進會議」(食品ロス削減推進会議)之專責機關,制定減少食品損耗的基本方針,並審議相關重要事項及推動政策之實施,而地方政府也應努力制定具體的相關促進計畫。本法也鼓勵企業與中央和地方政府合作,積極減少食物廢棄物,同時希望消費者自主採取行動。「減少食品損耗」作為從食品的生產到消費各階段的重要目標, 將成為新的全民運動。
當被授權人挑戰授權專利之有效性--美國法院對上訴條件「受有損害」的認定標準2021年4月7日美國聯邦巡迴上訴法院(United States Court of Appeals for the Federal Circuit,下稱CAFC)發布了關於Apple Inc. v. Qualcomm Inc.的裁決,指出因Apple Inc.(下稱Apple)未能滿足提起上訴的資格「證明授權專利的有效性會對授權協議義務產生具體的損害影響」,故駁回其對於專利審理暨訴願委員會(Patent Trial and Appeal Board ,下稱PTAB)做出之US7,844,037與US8,683,362專利(下稱爭議專利)有效性決定的上訴。 此案爭議專利是由Qualcomm Inc.(下稱Qualcomm)持有,Qualcomm曾以Apple侵犯爭議專利提起侵權訴訟,Apple隨後在PTAB對爭議專利提出多方複審程序(Inter partes review,下稱IPR),以挑戰爭議專利的有效性,但最後沒有成功。隨後,Apple與Qualcomm達成專利侵權和解協議並簽署了授權契約,授權的專利組合中也包含爭議專利。 在專利侵權和解協議後,Apple還是針對IPR的結果向CAFC提起上訴。由於提起上訴條件之一是上訴人需有受到損害的事實,Apple以其需持續支付權利金的義務主張有受到損害的事實。但CAFC認為,Apple並沒有證明若爭議專利被視為無效,則根據其與Qualcomm授權契約所應承擔的付款義務會發生改變。因此,法院裁定Apple不符合對IPR的結果提起上訴的資格。 由上述可知,作為專利被授權人,若要在授權契約條件下對爭議專利有效性決定提上訴,需要設法證明爭議專利的有效性會對授權協議義務產生具體的影響,否則被授權人將難以因其具有實質的損害從而讓法院啟動上訴作業。
美司法部對Google書籍搜尋和解方案是否涉嫌壟斷展開美司法部於2008年介入Google與Yahoo網站上進行的搜尋動作提供相關廣告的合作案後,再次針對Google公司的網路版圖擴張動作,是否造成阻礙公平競爭採取調查行動,這次的目標是Google與書籍作者與出版商之間的圖書、文章數位化和解協議。 事實上Google 去年已與美國書籍作者與出版協會取得和解共識,前者願支付 1.25 億美元和解金,後者則撤銷其違反著作權的指控。但「無主」(orphan)的著作物,像是絕版書或不明著作的書籍作者必須在5月5日最後期限前選擇退出Google的計畫,否則就會被納入和解案。 不過,有七位作者上周向法院要求把5月5日截止期限再延長四個月,理由之一是提議的和解案太複雜。為讓Google有更多的時間,與其它作者商議和解協議,美國紐約聯邦法庭已將和解的期限延至 9 月4 日。Google表示會再花六十天的時間找到作者,並說服他們就Google線上書籍搜尋服務一案達成和解。如果Google的和解計畫順利完成,在其「Google Book Search service」搜尋服務中,將可找到數百萬件的作品。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。