歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。

  新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。

  未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

相關連結
※ 歐盟提出人工智慧法律框架草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8659&no=16&tp=1 (最後瀏覽日:2025/07/28)
引註此篇文章
你可能還會想看
英國運輸部向議會提交《2023年公共充電樁規則》草案,規範充電樁規格標準

英國運輸部(Department for Transport)2023年7月11日向議會提交《2023年公共充電樁規則(Public Charge Point Regulations 2023)》草案,希望改善電動車駕駛的充電體驗。草案是根據《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》授權,規定一系列充電樁營運商必須遵守的充電樁規格標準,充電樁營運商若未遵守相關規定,最高可處以每座充電樁1萬英鎊之罰鍰: 一、定價及費用透明:充電樁營運商必須清楚標示每時段定價,以便士/瓩時(p/kWh)作為計價單位。每次充電後必須顯示充電總費用。 二、須提供24小時免費客服專線:充電點營運商須提供免費24小時專線,支援客戶服務。同時將客戶所提出的問題、解決方式和時間做成紀錄。 三、開放資料:充電樁營運商必須遵守開放式充電協議(Open Charging Point Interface, OCPI),建構開放式充電網絡,消除漫遊服務資料存取的障礙,免費公開充電樁位置、充電狀態、功率等充電樁相關資料。 四、感應式支付:所有新的8瓩以上公共充電樁,及現有快速公共充電樁必須提供消費者零接觸、無現金支付選項。 五、99%可靠性:所有快速公共充電樁,可靠性要求必須高達99%(即99% 的時間可以正常使用),並在網站公開充電樁可靠性資料。 六、充電漫遊支付服務(Payment roaming):充電樁營運商必須至少和一家第三方充電漫遊服務供應商(roaming provider)進行合作,使消費者可以透過漫遊服務,使用同一APP或具RFID感應功能的卡片,支付不同充電樁營運商的充電費用。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國政府強化推動「更佳建築倡議」計畫

  美國總統歐巴馬於2011年2月3日,根據美國振興方案(Recovery Act)預算案,宣布推動「更佳建築倡議」(Better Buildings Initiative)計畫,這個倡議計畫承諾透過一系列的獎勵,促進私人企業在建築節能改善上進行投資,並以到2020年要讓商業建築的能源效率提高20%做為目標。   在今年的6月19日,美國能源部與商業部共同宣布選定三個「卓越建築營運中心」(Centers for Building Operations Excellence),由美國能源部和商務部國家標準與技術研究院的製造業擴展夥伴關係(National Institute of Standards and Technologies’ Manufacturing Extension Partnership,NIST MEP)聯合資助130萬美元成立此三個中心,乃為推動「更佳建築倡議」計畫的相關行動之一,希望藉由三個中心的運作,來達成提高能源效率20%,並且期望一年可以減少約400億美元的能源支出。   「卓越建築營運中心」將會與各大學、地方社區、技術學院、貿易協會,以及能源部的國家實驗室合作,建立培訓計劃,提供商業建築專業人士所需要的關鍵技能,以提升建築效率,同時降低了能源的浪費和節省資金。   此三個中心分別位於加州、賓州以及紐約州,提供機會讓當前和未來有可能參與潔淨能源經濟的人,學習寶貴的技能,並且著重在於開發課程以及試點培訓方案,以培育優良的建築的經營者、管理者與能源服務供應商,進行商業、工業與教育建築物上的調整與能源管理。

Sir Tim Berners-Lee呼籲,開放政府資料(Open Government Data)的持續發展需要政府兌現其承諾

  開放政府資料(Open Government Data)從2009年美國發起開放政府倡議開始,在全球颳起一陣的旋風,主張公民享有政府資料的權利。這開放資料的浪潮,在2013年由G8工業國簽署開放政府資料憲章(Open Data Charter),約定將以開放為預設(open by default)推動開放政府資料,承諾致力於開放公部門資料、以不收取費用,並採用可再利用格式提供。隨後,G20工業經濟體於2014年跟進,以推動開放政府資料做為反貪腐的利器;聯合國也同時認知,現時亟需資料革命(Data Revolution)以做為實現全球發展的目標。   然而,依據網際網路基金會(World Wide Web Foundation)繼2013年所發布的Open Data Barometer(第一版),於2015年1月再度發布Open Data Barometer(第二版),以開放政府資料的整備、落實、與影響程度三大要素,來檢視與評估86個國家於2014年間對於開政府資料推動的狀況,結果發現仍有90%的資料還是閉鎖在政府機關。   從在資料內容方面來看,僅8%的國家採用開放格式與開放授權釋出核心資料,例如政府預算支出、公共服務執行資料集等,大部分國家仍未真正釋出多數核心資料集,不然就是雖已釋出但卻很難使用;更不用提用得以打擊貪腐和促進公平競爭的資料,如公司註冊、政府契約、土地所有權資料等。在法制與政策規範面,僅17%的國家具有公民對於資料主張權利(the right to information)的相關法制,大多數國家尚未以法律或政策做為課與機關主動積極(proactive)釋出資料的義務(mandated)、實現公民對於資料主張權利的依據,而且多數國家在開放政府資料的規範與程序上,對於個資隱私的保護仍然不足,或仍處於非常不確定的狀態。   為確保資料革命達成通透度和政府的性能,Open Data Barometer研究報告提出下列關鍵步驟,提供各國政府參採: ‧由政府高層承諾將主動積極釋出公部門資料,尤其是得促進問責(accountability)的關鍵資料 ‧持續投入支援與提供培訓,使多數公民社會與企業理解與有效率地使用資料 ‧因應各國需求開發開放資料的工具和方法,例如於在識字率較低的國家,採用視覺化方式呈現資料 ‧支持地方層級開放資料的倡議,以補強國家層級開放政府資料的方案 ‧進行法規調適,以確保公民對於資料主張權利,並於開放資料倡議中加強對於個資隱私保護的基礎   網路發明者與網路基金會創始人Sir Tim Berners-Lee依Open Data Barometer的調查結果,批評政府仍持續迴避開放可用於增強問責與信任的資料,並強調開放資料的強大力量,在於資訊的權利還給公民。 備註: Open Data Barometer群組排名如下: 已開發國家 新興市場國家 開發中國家 1)英國 21)巴西 36)印尼 2)美國 22)墨西哥 39)印度 3)瑞典 33)匈牙利 46)迦納 4)紐西蘭 33)秘魯 46)盧安達 4)法國 36)阿根廷 49)肯亞

TOP