歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。

  新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。

  未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

相關連結
※ 歐盟提出人工智慧法律框架草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8659&no=64&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
歐盟資料治理規則提出資料利他主義制度以利於公益目的之利用

  歐盟於2022年5月30日正式簽署通過「資料治理規則」,同時引入(EU)2018/1724修正案(REGULATION (EU) 2022/868 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on European data governance and amending Regulation (EU) 2018/1724),針對資料中介組織及資料利他主義組織業務啟動、營運等註冊程序進行補充。   資料治理規則也通稱為資料治理法(Data Governance Act, DGA)。DGA以建立一個可信賴的資料流通環境,達成資料的可利用性,以促進資料可用於各項研究以及創新的商品和服務為目標。   DGA中,特別引人注意的是第四章「資料利他主義」(Data altruism)的提出。依據資料治理規則第二條,所謂的資料利他主義係指資料主體基於自願且無償的情況下,同意他人得處理或利用其所持有的個人資料;或資料持有者在不尋求補償的情況下允許他人得利用其所有的非個人資料(non-personal data)。而這些資料利用的目的是以實現公共利益為目標,例如醫療保健、解決氣候變化、改善交通、促進公部門統計資料的產製與應用、改善公共服務、制定公共政策,或是科學研究等。   為利於資料利他主義的落實,歐盟希望有明確的的制度設計,藉以促成更多資料主體或資料持有人,在有足夠信任的基礎下,願意將資料無償提供並進行公益目的之利用,進而實現改善生活的目標。 因此,DGA中提出以下作法: 制訂「歐洲資料利他主義同意書」(European data altruism consent form):該法授權歐盟執委會應在諮詢過歐盟資料保護委員會(European Data Protection Board)以及考慮過DGA新設之歐盟資料創新委員會(European Data Innovation Board)的意見後,制定統一的「歐洲資料利他主義同意書表格」。以此增加資料主體對於資料授權的信任,提高資料主體同意將資料釋出與流通再利用之意願,並為授權或撤銷同意建立法遵明確性。 資料利他主義組織(data altruism organisations)管理機制: (1) 資料利他主義組織採自願註冊制度,而非許可制。在資料利他主義於符合形式登記要件後,並符合非營利、透明性以及滿足保障民眾權利等要求後,於其所屬會員國中註冊以成為公認(recognised)的資料利他主義組織。採自願註冊而非許可制的目的,是希望先以管制密度較低的方式,鼓勵更多組織投入資料利他主義的推動。 (2) 給予已註冊之資料利他主義組織識別標誌:透過相關的認可機制並授予識別標誌,藉此提高資料利他主義組織的可辨識度與信賴度,讓民眾在選擇合作的組織時有所依循。 (3) 透明度要求:為了增加資料主體或資料持有者對該組織的信任度,歐盟也將對資料利他主義組織進行一定程度的監督管理,例如年報編列與管理、是否以清晰易懂方式通知資料主體或資料持有者其資料被利用的目的、需保留資料利用之所有紀錄等。此外,也需要遵守DGA授權歐盟執委會未來訂定的相關補充規範。   整體而言,歐盟將資料利他主義的公益精神經由法制化的方式納入歐洲資料治理規則,透過歐洲資料利他主義同意書以及資料利他主義的相關管理規範,降低溝通成本以及建立信任基礎,以增加資料釋出的可能性,進而提升資料被利用的程度,最終達成改善人類福祉的目標。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。   根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

TOP