歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。

  新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。

  未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

相關連結
※ 歐盟提出人工智慧法律框架草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8659&no=64&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
美國食品藥物管理局發布《人類細胞及基因製劑生產變化及可比性試驗》指引草案—建構再生醫療產品品質要求

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。 之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。 可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。 細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

何謂「三螺旋理論」

  三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。   因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。   有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。   在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。

美國交通部公布車輛與基礎設施間聯網指引,強化車聯網時代行車安全

  美國交通部(U.S. Department of Transportation)部長(時任)Anthony Foxx於2017年1月19日公布「車輛與基礎設施間聯網指引」(Vehicle-to-Infrastructure (V2I) Guidance),旨在透過加速車輛與基礎設施間通訊系統之布建,增進車聯網時代的行車安全與機動性。同時,本指引也將補充交通部於2016年12月所公布之車輛間通訊規則草案,後者最重要的目的是透過車輛間通訊技術的管理,提升駕駛人對於碰撞與潛在危險的認知以預為因應。透過車輛與基礎設施間聯網指引,交通部聯邦公路管理局(Federal Highway Administration, FHWA)將協助運輸系統的所有人與操作人進行相關技術的布建,並讓各運輸事業主管機關與收費道路管理機關,了解布建相關技術之決策所可能造成的影響,並為相關技術的未來發展與聯邦挹注資金的利用(因為多數的V2I能夠整合於既有之ITS設備或道路周邊基礎設施,因此符合聯邦對ITS的補助條件),做好準備。   車輛與基礎設施間之通訊,是車聯網環境的重要構成部分,透過硬體、軟體、韌體、以及無線通訊系統,相關資料不但能在車輛間進行動態傳輸,亦得在車輛與道路基礎設施間進行傳輸。聯邦公路管理局局長(時任)Gregory Nadeau表示:「除了增進行車安全,車輛與基礎設施間之通訊技術能提供相當大的機動性,並為整體環境帶來益處。車輛與基礎設施間之通訊與聯網,以及諸如隱私與互通性等更大的挑戰,都將由本指引作為展開全國性對話的起點。」車輛與基礎設施間聯網(V2I)可謂智慧運輸系統(Intelligent Transportation Systems, ITS)的次世代技術,其能捕捉車輛所產生的交通資料,並向車輛無線傳輸例如行車建議等的資訊,讓駕駛人能夠掌握與安全性、機動性、甚或是與整體環境相關的所有情況。   車輛與基礎設施間聯網指引的內容,目前包括聯網車輛運輸衝擊規劃初階報告(Connected Vehicle Impacts on Transportation Planning Primer)、聯網車輛運輸衝擊規劃桌上參考手冊(Connected Vehicle Impacts on Transportation Planning Desk Reference)、技術備忘錄第2號:聯網車輛規畫流程與產品及利害關係人角色與責任(Connected Vehicle Planning Processes and Products and Stakeholder Roles and Responsibilities)、技術備忘錄第3號:新型與強化型分析工具、技術、與資料之需求分析(Analysis of the Need for New and Enhanced Analysis Tools, Techniques, and Data)、技術備忘錄第6號:運輸規劃導入互聯車輛所需之技能與專業知識(Skills and Expertise Required to Incorporate Connected Vehicles into Transportation Planning)、新型與強化型分析工具、技術、與資料之需求分析:公路容量手冊簡介(Highway Capacity Manual Briefing)、新型與強化型分析工具、技術、與資料之需求分析:交通系統模擬模式簡介(Briefing for Traffic Simulation Models)、以及聯網車輛運輸衝擊規劃:社區關懷案例研究(Outreach to Planning Community)。   另外,為了讓執照核發條件透明化,相關的典範實務(best practices)也能為各政府與民間組織機關近用,以布建聯網車輛專用短程通訊(Dedicated Short Range Communications, DSRC)路邊基地台(Roadside Units, RSU)與相關服務,用以支援車輛與基礎設施間之聯網應用,亦針對執照持有人訂有指引(Guide to Licensing Dedicated Short Range Communications for Roadside Units)。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

TOP