隨著新冠肺炎(COVID-19)帶來的影響,以及自動駕駛車輛(Autonomous Vehicle,下稱自駕車,自動駕駛稱為自駕)應用情境發展,美國佛羅里達州(State of Florida,下稱佛州)自2021年07月01日起正式讓低速自駕貨車(Low-Speed Autonomous Delivery Vehicle)可於其境內道路上行駛。
美國佛州首先在其州法典(Florida Statutes)有關全州統一性之車輛定義中,新增低速自駕貨車之定義,即配備毋須人類駕駛之自駕系統,且非設計作為載客運輸之車輛;此外,其須符合聯邦法規法典(Code of Federal Regulation, CFR)定義中之低速車輛(Low-Speed Vehicle),且須配備頭燈、剎車燈、方向燈、尾燈、反光設備以及車輛識別號碼,但不適用於該州其他低速車輛相關限制法規。惟如相關規定有與國家公路交通安全管理局(National Highway Traffic Safety Administration,即NTHSA)另外採用之聯邦規範相衝突時,則依NTHSA採用之規範。
此外,在該州法典亦明示低速自駕貨車在其境內道路上行駛之限制與條件:
1.低速自駕貨車原則僅能在速限低於時速為35英里以下之道路或街道上行駛。(但如該道路與速限超過時速35英里者相交,亦不影響低速自駕貨車穿越該相交路口)
2.低速自駕貨車在以下特定情形,可於速限為時速45英里以下之道路或街道上行駛:
(1)低速自駕貨車在該等路段不會連續行駛超過1英里,不過該等路段之管轄單位有權針對連續行駛超過1英里的部分裁量是否放寬限制。
(2)低速自駕貨車並非為了轉向目的而獨立地在右側車道上行駛。
(3)在低速自駕貨車行駛於兩線道的道路或街道上,且後方有5輛以上的車輛時,後方車輛倘若因超車而可能駛入對向車道,或可能導致其他非安全之情境下,低速自駕貨車可在有充分安全駛離之處,自該兩線道的道路或街道駛離至限為時速45英里以下之道路或街道,以利後方車輛得繼續行駛。
3.低速自駕貨車之所有人、其遙控系統(Teleoperation System)之所有人、遠端操作人員(Remote Human Operator)或前開人員之組合式,必須為低速自駕貨車投保符合州法典明文之自駕車相關保險。
由於近年來勒索軟體對國際金融帶來重大影響,七大工業國組織G7成立網路專家小組CEG(Cyber Expert Group),並於2022年10月13日訂定了「金融機關因應勒索軟體危脅之基礎要點」(Fundamental Elements of Ransomware Resilience for the Financial Sector),本份要點是為因應勒索軟體所帶來之危脅,提供金融機關高標準之因應對策,並期望結合G7全體成員國已施行之政策辦法、業界指南以及最佳之實踐成果,建立處置應變之基礎,加強國際金融的韌性。該份要點內容著重於民營之金融機關(private sector financial entities),或關鍵之第三方提供商(critical third party providers),因其本身有遵守反洗錢和反恐怖主義之融資義務,但也可依要點訂定之原意,在減少自身受到勒索軟體之損害上,或在處置與應變上有更多的彈性。而日本金融廳於2022年10月21日公布該份要點之官方翻譯版本,要點所提列之重點如下: 1.網路安全策略與框架(Cybersecurity Strategy and Framework): 將因應勒索軟體威脅之措施,列入金融機關整體的網路安全策略與框架之中。 2.治理(Governance): 支付贖金本身可能於法不容許,也可能違背國家政策或業界基準,金融機關須在事件發生前,檢視相關法規,並針對潛在的被制裁風險進行評估。 3.風險及控制評估(Risk and Control Assessment): 針對勒索軟體之風險,應建立控制評估機制並實踐之。因此可要求金融機關簽訂保險契約,填補勒索軟體造成的損害。 4.監控(Monitoring): 針對潛在的勒索軟體,金融機關有監控其活動進而發現隱藏風險之義務,並向執法與資通安全機關提供該惡意行為之相關資訊。 5.因應處置、回覆(Response): 遭遇勒索軟體攻擊之事件,就其處置措施,須依原訂定之計劃落實。 6.復原(Recovery): 遭遇勒索軟體攻擊之事件,將受損之機能復原,須有明確的程序並加以落實。 7.資訊共享(Information Sharing): 須與組織內外之利害關係人共享勒索軟體之事件內容、資訊以及知識。 8.持續精進(Continuous Learning): 藉由過往之攻擊事件獲取知識,以提高應變勒索軟體之能力,建立完善的交易環境。 此要點並非強制規範,因此不具拘束力,且整合了2016年G7所公布的「G7網路安全文件之要素」(G7 Fundamental Elements of Cybersecurity document)之內容。綜上述CEG所提列重點,針對我國金融機關在抵禦網路攻擊之議題上,應如何完善資安體制,與日本後續因應勒索軟體之政策,皆值得作為借鏡與觀察。
美國政府提出強化金融數據境外監管之提案美國財政部(The Treasury Department)與美國貿易談判代表署(USTR)就跨太平洋夥伴協定(Trans-Pacific Partnership, TPP)數據監管要求之規範提出一項有關金融服務之提案,以保護美國境外金融數據資料之問題。該提案之主要目的係因TPP電子商務專章規範締約國不得要求外國業者須於投資當地設立數據儲存伺服器,然而,該專章排除金融服務業之適用,因此,在該提案中提出締約國不得要求外國金融服務業者在其境內應設立數據儲存伺服器,且要求美國政府於未來及目前談判中之國際經貿協定,如TiSA、TTIP、美國與中國雙邊投資協定(BIT)等,使金融服務業者無須於投資當地設立數據儲存伺服器。在此提案中,美國亦有意要建立一個國家對國家之爭端解決機制來解決相關問題。 美國貿易談判代表Michael Froman表示此乃透過協調利害關係人與國會議員,在國家優先利益的領域中尋求多方共識,美國將會繼續在TPP中實施並執行其協調工作。證券業與金融市場協會(the Securities Industry and Financial Markets Association)執行長肯認美國財政部及美國貿易談判代表署之作法。 雖然TPP業已完成談判,談判結果並不會受到本次提案談判立場之影響,但美國官員仍有意透過雙邊談判的途徑,與TPP國家中受金融業者關切的國家,如越南、馬來西亞、新加坡與汶萊展開諮商,以解決在TPP中的這項議題。
韓國提出一系列新創支援措施,以躋身全球四大新創強國為目標韓國中小企業暨新創事業部(Ministry of SMEs and Startups)於2021年8月30日發布「使韓國躋身全球四大新創強國之新創支持措施」(Venture Complementary Measures for Korea to Become One of the Top 4 Global Venture Powerhouses)。韓國總統文在寅指出,第二波創業爆發期為立基於西元2000年的第一波創業爆發期之上,如今韓國企業數量較當時已增加四倍,創投投資額更突破4兆韓元,顯示韓國新創的蓬勃發展潛力。為了能在政策面有效支持韓國新創能在第二波創業爆發期(Second Venture Boom)獲得所需的人才與資金,韓國中小企業暨新創事業部規劃三大面向、十二項任務作為推動韓國躋身全球四大新創強國之新創支持措施: 在打造韓國新創國際競爭力面向,推動股票選擇權改革、全面修正《促進新創事業發展特別措施法》並廢除落日條款、提高由政府對高科技新創公司貸款提供擔保的技術擔保(technology guarantee)額度上限至200億韓元、安排國際創投媒合價值1兆韓元的全球創投資金,以及配合全球關注ESG趨勢,以碳價值(carbon value)評估為基礎,提供價值5000億韓元的氣候應對保證(climate response surety)。 在擴大創業投資市場面向,包含創造私人基金投資的誘因及允許對特定智慧財產權進行投資、進行矽谷式的(Silicon Valley-type)創投基金監管、為早期新創公司引進一兆韓元的創投資金,以及提供創業加速器租稅減免等措施。而在多元化新創出場措施面向,則規劃新增技術創新併購擔保以及增加新創併購基金、給予更多併購租稅優惠,以及提供價值1000億韓元的出場基金等。 韓國中小企業暨新創事業部指出,在第一波創業爆發期中,韓國新創打下了良好基礎,為了把握第二波創業爆發期的發展機會,韓國政府將加強與民間合作,以發展新創來創造就業機會並作為國家發展動能。為了達成躋身全球四大新創強國的目標,中小企業暨新創事業部將全力協助人才與資金的募集,從而完善韓國的新創生態系資源。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。