2021年7月14日歐盟普通法院裁定時尚品牌GUERLAIN法國嬌蘭(簡稱嬌蘭)口紅外盒形狀可註冊為商標。
嬌蘭於2018年針對其口紅外盒設計向歐盟智慧財產局(簡稱EUIPO)提出商標申請,EUIPO審查認為申請的商標缺乏識別性特徵並駁回申請;嬌蘭進而向EUIPO提出上訴,其上訴委員會維持該決定,理由為口紅立體形狀外盒設計與時尚產業領域的其他產品沒有“顯著差異”。
在上訴中,歐盟普通法院裁定EUIPO上訴委員會的決定無效。法院將嬌蘭的口紅設計與最常見的圓柱口紅形狀、平行六面體形狀進行比較,並指出嬌蘭申請的口紅外盒設計與市面上其他品牌之口紅外觀設計有明顯不同,認為該口紅外盒設計具有顯著特徵。
最終,歐盟普通法院說明判斷商標是否具有顯著性,不應該以商標在相關商品和服務所屬領域具有獨創性或未使用為依據;此外,僅僅立體形狀的新穎性和美觀特徵為主觀看法,不足以得出具有獨特性的結論,因為決定性的標準是該立體形狀可顯現出商品或服務來源的能力。同時,歐盟普通法院重申相關判定標準是嬌蘭口紅外盒立體設計方式以類似於船、搖籃或倒置金條的獨特形狀組成,明顯與時尚產業固有的口紅外盒的圓柱、平行六面體形狀設計規範和習慣大相徑庭,並且相關形狀特徵設計足以讓相關消費者藉以區辨服務來源。
在時尚品牌產業,商標本身通常不能成為區分品牌產品的唯一方式,尤其是當一個品牌提供多樣化的產品時更是難以認定具有獨特性。本案普通法院對立體形狀商標顯著特徵的認可無疑將為希望可保護其產品顯著設計元素的時尚品牌帶來曙光。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
Viacom 對YouTube提出之著作權侵權訴訟已被駁回美國法官駁回Viacom公司對Google之影片分享網站YouTube所求償美金10億元之訴訟,這個重要的勝利潛在地強化眾多網路服務提供者所獲得之法律保護。。 此一判決結果並非表示這場爭執3年的法律大戲已結束,因為紐約媒體大亨Viacom立刻承諾對於這判決提起上訴。如最後此一判決是被確認,將可能使得影片創作在現今這數位時代中更難受到保護。 Viacom是在2007年3月對Google提起此一侵權訴訟,內容指出其電影、電視節目及其他內容被廣泛的置於YouTube網站,涉及故意侵權。Google是在2006年10月以16億5千萬買下YouTube,於本訴訟中Google以其符合數位千禧年著作權法(Digital Millennium Copyright Act)之要求,即時取下經權利人所通知後之侵權內容作為抗辯。此案因涉及數位千禧年著作權法中之安全港條款,因而被受關注。 美國紐約南區地方法院法官Stanton於判決中,表示數位內容之著作權保護,非取決於網路服務提供者是否監控其所提供的服務,而在於其於接獲著作權權利人通知後之反應。更進一步表示YouTube已盡其責任,2007年初在接獲Viacom通知其網站約有10萬件受著作權保護影片後,幾乎於接到通知之下一個工作天內便將這些影片取下。並且表示Viacom於本案所提出之法律論點太薄弱。不意外地,Viacom對此不悅的表示:此一判決基本上是有缺點的,並試圖訴諸於美國第二巡迴上訴法院。 然而,Google的法務長Kent Walker表示這是一場重要的勝利,不僅只是對Google也是對全球幾十億利用網路溝通與經驗分享的使用者,並期待將焦點集中在鼓勵毎天於全世界YouTube網站張貼並瀏覽這數量龐大且驚人的想法與創作表達。
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現