新加坡律政部(Ministry of Law)於2021年7月6日向國會提出新的《著作權法》(Copyright Bill),以廢止和取代現行法令(Copyright Act)。新法修正了舊法關於創作、散布和使用方式的規定,讓法令更與時俱進以完善新加坡的著作權保護。此外,新法簡化法條用語,使其更容易理解。
新法的特點有:
1.為創作者引入新的權利和救濟措施,以確保著作權能夠繼續鼓勵創作並激發創造力。例如:
(1) 使用者應取得創作者或表演者的許可,始可公開地利用或在網路散布創作者或表演者的資料。此規定係賦予創作者或表演者的身分識別權,有助於個人創作者和表演者建立起自己的聲譽。
(2) 除合約另有規定,受託製作攝影、肖像、版畫、錄音和影片的著作權歸屬於創作者,此規定迥異於目前乃委託者擁有著作權。新法的規定,使創作者有更好的條件與委託者談判,並可將其作品商業化。
2.對著作權人之權利制定「允許使用」(permitted uses)的例外,擴大著作的使用權,以利著作造福社會並且支持創新。例如:
(1) 倘係合法取得著作(如未規避付費牆paywall),則可將該著作用於資料計算分析(computational data analysis),如情感分析、文本和資料探勘(text and data mining),或訓練機器學習,而無需向每個著作權人取得許可,新規定對研究和創新將有助益。
(2) 教師和學生如果確認資料來源為合法時,可以在教育活動中(如居家學習)使用免費的網路資料。惟知悉來源有侵犯著作權時,則應停止使用。
3.此外,現行法令針對販賣或提供盜版視訊盒(set-top box)的業者,未清楚規定是否應負責,新的《著作權法》則明文著作人得追究販售、宣傳或散布違法且侵權設備或服務而牟利的業者。
新法若經國會通過,預計於2021年11月可實施該法大部分條款。
隨著加密資產與區塊鏈技術的迅速發展,美國國會眾議院於2025年5月5日提出《數位資產市場結構法案討論稿》(Digital Asset Market Structure Discussion Draft),旨在制定新法並同時修改多部美國聯邦金融法規,以建立數位資產的清晰監管框架,期促進美國數位資產市場創新、投資人保障與維護市場公平,其討論重點如下: 1. 數位資產定義與監管職權劃分:於證券法(Securities Act)與商品交易法(Commodity Exchange Act)新增大量關於數位資產的定義,並明確劃分證券交易委員會(Securities and Exchange Commission, SEC)與商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)的監管界線。 2. 去中心化金融(Decentralized Finance, DeFi)、穩定幣與成熟區塊鏈系統的豁免機制:成熟區塊鏈系統、受核准的支付型穩定幣(Permitted Payment Stablecoins)與特定DeFi活動(如:驗證交易、提供用戶介面等)得排除法令適用,為區塊鏈項目提供更彈性的監管途徑。 3. 市場參與者註冊要求:規定數位商品交易所、經紀商、交易商之市場參與者,應向CFTC註冊之相關要求,遵循包含資本規範、客戶資金隔離、交易監控、報告義務等原則,以提升市場透明度和投資者保護。 4. 數位資產領域研究:要求SEC與CFTC應設立金融創新辦公室(Offices of Financial Innovation) 和創新實驗室(LabCFTC),進行多項關於數位資產領域的研究,包含DeFi、金融市場基礎設施之改善等,以提供監管機構新興技術資訊。
紐約市實施《生物辨識隱私法》強化生物特徵保護伴隨人工智慧、大數據及雲端運算浪潮,生物辨識技術逐漸成為日常生活的一部分。所謂生物辨識技術,是指利用個人獨特之生物特徵辨識個人的技術。生物特徵包含任何人類生理或行為特徵,只要能夠滿足普遍性、獨特性、不變性及可蒐集性 ,即可作為生物辨識之資訊。由於生物辨識技術能利用生物特徵達到識別與驗證個人身分,因而引發公眾對隱私、資安等議題的關注。 對此,紐約市於2021年7月21日也開始正式施行《生物辨識隱私法》(biometric privacy act) ,期能藉由限制業者利用生物辨識技術以及賦予消費者訴訟權利作法,促成隱私權的週全保障。 該法主要有三大部分: 一、規範生物辨識資訊範圍,包含但不限於(1)視網膜或虹膜掃描(2)指紋或聲紋(3)手或臉部立體掃描或是其他可用於識別之特徵。就前開生物特徵,要求業者應在所有消費者入口處放置清晰顯眼的標誌,搭配簡單易懂方式揭露其蒐集、保留、儲存消費者生物辨識資訊行為。同時,也明文禁止業者將消費者生物辨識資訊以販賣、租賃、交易或是分享方式交換任何相關價值或利益。 二、提供受侵害之消費者訴訟權與法定賠償請求權。但是,就單純未符合揭露要求之業者,該法給予30天的補救期間,要求消費者應於起訴前30天通知業者改善,一經改善即不得再起訴。 三、闡明政府相關部門不適用本法。金融機構、業者與執法部門共享生物辨識資訊,以及單純以影像、圖像蒐集而未分析識別情形則豁免揭露規範。 綜上,紐約市於該法創設訴訟權、法定賠償數額及豁免事由,預料將會是紐約市企業隱私保護政策重要指標,而值得我們繼續關注其發展與影響。
英國商業、能源及產業策略部提出新版「後2020智慧電表布建計畫」,以助於住家型智慧電表全面布建英國商業、能源及產業策略部(Department of Business, Energy and Industrial Strategy,以下簡稱BEIS)於2020年6月18日提出新版「後2020智慧電表布建計畫」(Smart meter policy framework post 2020,以下簡稱旨揭智慧電表計畫),擬於未來4年內全面布建住家型智慧電表,以助於住家型用電戶管理用電並進一步減低碳排放量。 依BEIS預估,布建後有可能助於節省住家型用電戶平均250英鎊之電費,並減少全國4千5百萬噸碳排放量。依旨揭智慧電表計畫,電表布建費用將由售電業負擔,售電業應盡其最大努力布建智慧電表,如售電業並未盡到此一義務,則恐將面臨高額罰鍰。同時,智慧電表之布建可以鼓勵消費者改變用電習慣,如鼓勵消費者於用電離峰時間對於電動載具進行充電,或者是設置(再生能源)發電設備用於用電高峰期間發電、饋電至電網。 從而BEIS旨揭智慧電表計畫,也是為BEIS於2019年1月提出智慧饋電保證(Smart Export Guarantee,以下簡稱SEG)鋪路。於SEG新政策下,BEIS將擬定一套不同於躉購制度之政策框架,使小型生產消費者(prosumer,此處係指可以自行生產電力之用電戶)所生產之綠色電力,可於此一政策框架之保障下,與售電業者議約,並將電力售予售電業者,以減輕英國政府預計於今年3月廢除躉購制度所帶來之衝擊。又依SEG新政策,小型生產性用電戶須設置有智慧電表,始受前開SEG新政策之保證,從而得以優惠之價格或條件將再生能源設備所產生之電力出售予電力供應事業主體。職是故,BEIS旨揭智慧電表計畫,實際上可謂與BEIS於2019年所提出SEG新政策相互搭配,以迎接後躉購制度時代之來臨。 對於智慧電表之硬體規格,依旨揭智慧電表計畫,第二代智慧電表(SMETS2)為其建置之核心。第二代智慧電表與第一代智慧電表不同之處在於,第一代智慧電表係以3G為通訊基礎,且不同電力供應事業主體所使用之系統相互間無法交流、並存,第二代智慧電表則以4G以上規格為通訊基礎,且不同電力供應事業係使用同一套系統。同時,智慧電表應盡量配置有「住家顯示系統」(In-Home Displays),使住戶可以透過視覺化之及時反饋方式,知悉現在住家內之能源使用情形以及相關電價狀況,從而進行改變用電習慣。同時,智慧電表之用電或饋電至電網之資訊,也應可以透過智慧電表傳輸至電力供應事業主體或交易市場,從而使電力供應事業主體可及時知悉用電戶之用電或饋電情形,從而及時做出反應。 對於智慧電表之建置程序以及資訊傳輸、保存安全性上,旨揭智慧電表計畫則要求應符合「智慧電表建置行為準則」(The Smart Meter Installation Code of Practice, SMICoP),從而用電戶可以在此一準則或框架下,對於自己之用電資料享有一定之掌握權限。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。