美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=16&tp=1 (最後瀏覽日:2026/02/23)
引註此篇文章
你可能還會想看
美國創新戰略推動下科技政策與重要法案之觀察

日本2021年修正《個人資料保護法》,整合個資法體系

  日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。   為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。

英特爾將停用開源碼授權

  英特爾公司宣布,將廢止一項適用於部分自家軟體的開放原始碼授權辦法。這家晶片製造公司表示,已通知開放原始碼促進會 (Open Source Initiative ; OSI) 移除英特爾的開源碼授權許可,未來不再以 OSI 認可的授權形式繼續使用。 OSI 是一個非營利性機構,其宗旨在推廣使用開放原始碼軟體,並且在 OSI 網站上公布一份開放原始碼軟體授權清單。該公司希望把英特爾開放原始碼授權 (Intel Open Source License) 「移除,未來停用」,藉此降低授權協議日益增多的情形。    授權協議如雨後春筍般地孳生,已引起開放原始碼社群人士關切,因為授權版本大增之後,有意採用開放原始碼軟體的企業必須多花一些錢評估、管理各類型的授權,無形中導致成本增加。英特爾發言人表示,決定廢止開源碼授權,是發現公司內部數年來一直未使用,公司以外的使用頻率也不高。 Smith 說,英特爾不希望讓這項授權的「解除許可」效力回溯既往,以免迫使企業重新取得程式碼的使用授權。

美國聯邦航空總署公布《無人機遠端識別最終規則》

  美國聯邦航空總署(Federal Aviation Administraiton, FAA)於2020年12月28日公布「無人機遠端識別最終規則(Final Rule on Remote Identification of Unmanned Aircraft)」,針對250克以上無人機的遠端身分識別操作規則進行規範: (1)標準配備有遠端識別的無人機:   無人機需透過wifi或藍芽等技術廣播(broadcast)其遠端識別資訊,包含無人機ID,即無人機序號(serial number)或交談識別碼(session ID);無人機的速度、經緯度和海拔高度;控制站的經緯度和海拔高度;緊急狀況的狀態和時間戳記(time mark)。該規則要求無人機廣播範圍內大多數的個人無線裝置(wireless device)都可取得無人機的遠端識別訊息,但序號、交談識別碼以及註冊資料庫僅限FAA和被授權人員可於特定情況下取得。 (2)額外加裝遠端識別廣播模組的無人機:   廣播模組可能為與無人機連線的獨立裝置,或以加裝於無人機內部的形式存在,此類無人機必須於視距內操作,並透過wifi或藍芽等技術廣播其遠端識別資訊,包含模組的序號;無人機的速度、經緯度和海拔高度;起飛地點的經緯度、海拔高度和時間戳記。 (3)於FAA認可之識別區域(FAA-Recognized Identification Areas, FRIA)中飛行:   在FRIA區域中,無人機可不具備遠端識別飛行,但無人機操作需處於視距內與FRIA區域界線內。   該最終規則已送至美國聯邦公報辦公室(Office of the Federal Register),且會在公告後60天生效,預計於2021年1月公告。

TOP