美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。
依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。
依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。
此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。
最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
本文為「經濟部產業技術司科技專案成果」
美國財政部外國資產控制辦公室(The US Department of the Treasury’s Office of Foreign Assets Control, OFAC)於2021年9月21日更新並發布了與勒索軟體支付相關之制裁風險諮詢公告(Updated Advisory on Potential Sanctions Risks for Facilitating Ransomware Payments)。透過強調惡意網絡活動與支付贖金可能遭受相關制裁之風險,期待企業可以採取相關之主動措施以減輕風險,此類相關之主動措施即緩減風險之因素(mitigating factors)。 該諮詢認為對惡意勒索軟體支付贖金等同於變相鼓勵此種惡意行為,故若企業對勒索軟體支付,或代替受害企業支付贖金,未來則有受到制裁之潛在風險,OFAC將依據無過失責任(strict liability),發動民事處罰(Civil Penalty制度),例如處以民事罰款(Civil Money Penalty)。 OFAC鼓勵企業與金融機構包括涉及金錢存放與贖金支付之機構,應實施合規之風險管理計畫以減少被制裁之風險,例如維護資料的離線備份、制定勒索事件因應計畫、進行網路安全培訓、定期更新防毒軟體,以及啟用身分驗證協議等;並且積極鼓勵受勒索病毒攻擊之受害者應積極聯繫相關政府機構,例如美國國土安全部網路安全暨基礎安全局、聯邦調查局當地辦公室。
英國BSI發布自駕車發展與評估控制系統指引英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。 指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。
電玩角色身上之「刺青」著作權歸屬議題隨著遊戲產業不斷提升遊戲畫面的精緻程度,遊戲角色也更加貼近於真實。近期,一款由Take-Two(遊戲開發商)推出名為「NBA 2K」的遊戲,遭到Solid Oak(集合刺青家授權,保護刺青著作權)控告遊戲角色(NBA球星)身上的刺青出現在遊戲中,是侵害刺青圖案著作權的行為。 本案之爭點為遊戲中出現的刺青是否納入著作權保護範圍內及遊戲開發商對於刺青的再次使用及展示有無違著作權法。Solid Oak顯然符合關於著作權法對於原創性(original works)的要求,惟由於刺青師與運動員並無任何著作權協議,因此推斷刺青師仍保有著作權。Take-Two主張在遊戲的使用上屬於公平且微量的。他們在遊戲中所呈現之畫面,其唯一目的是保持運動員真實性形象,若不去暫停或者放大畫面,幾乎看不清楚那些圖案(刺青)。由於本案仍在訴訟中,未來是否能肯認此為合理使用,並未明確。現階段如要避免此類爭訟,或許遊戲開發商得考慮直接向刺青師(藝術家)取得授權,或由運動員與刺青師簽約並取得授權,進而使遊戲開發商出版遊戲時,得透過與運動員或聯盟等簽訂使用球員形象之合約,間接使用該等圖案。 隨著科技的發展,從虛擬實境內容涉及實體藝術品之著作權,到真實人物形象於遊戲中呈現的著作權歸屬,智財權議題越趨多元。未來在快速變遷的時代,在智財權保護及科技發展之衡平上,更應保留彈性不設限範圍。
M2M時代下的資料保護權利之進展-歐盟與日本觀察