日本經濟產業省公布創業支援計畫「J-Startup」最新獲選為新創企業之名單

  日本經濟產業省於2021年10月20日公布第3屆「J-Startup」新創企業獲選名單。本次共選出50間企業,產業所涉及領域包含醫療、數位轉型、能源、太空等。獲選的企業將獲得政府及合作的民間組織所提供之支援,例如協助國內外活動展出、援助研究開發、增加投標機會、商談與其他企業合作等,預期創造出新創企業的成功範例。

  「J-Startup」新創企業之選拔分為二階段,第一階段是由具備創業經驗之推薦委員(推薦委員由頂級風險投資人、大企業中與創新有相關之人才、學術單位專家等人員組成)基於新創企業的經營理念、國際性、成長發展性、對於社會議題的應對措施等考量,推薦在全球市場快速發展、具備有領導日本創新潛力之新創企業。第二階段由第三方外部審查委員(律師、學術專家等組成)審查選拔程序後,確定「J-Startup」新創企業名單。

  「J-Startup」於2018年6月是由日本經濟產業省、日本貿易振興機構(JETRO)、新能源產業技術綜合開發機構(NEDO)共同創立營運,目的為培養出活躍於全球之新創企業。第1屆「J-Startup」(2018年6月)選拔出92間企業,第2屆(2019年6月)選拔出49間企業,再加上今年度所選拔出之50間企業,目前為止共計有188間新創企業獲選為「J-Startup」(第1屆、第2屆獲選企業中,有3間企業已解散或被併購)。

相關連結
相關附件
你可能會想參加
※ 日本經濟產業省公布創業支援計畫「J-Startup」最新獲選為新創企業之名單, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8747&no=67&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
歐盟執委會通過數位歐洲計畫2023~2024年工作計畫

為促進歐洲的數位轉型,歐盟執委會(European Commission)在2023年3月24日於通過數位歐洲計畫(Digital Europe programme, DEP)下的2023~2024年工作計畫,預計投入12.84億歐元於「主要數位歐洲計畫工作計畫」(Main DEP programme)(下稱「主要工作計畫」)及「網路安全工作計畫」(Cybersecurity Work Programme),以延續之前投入之成果,並加強歐盟對抗網路威脅的集體韌性。 實際上歐盟於2018年即提出第一個數位歐洲計畫,並透過數位單一市場策略(Digital Single Market strategy)嘗試建立符合數位特性的監管框架,藉以提高歐盟的國際競爭力,發展及加強歐洲的數位能力。數位歐洲計畫包括五個重點領域:超級電腦(Supercomputers)、人工智慧(Artificial intelligence, AI)、網路安全及信任(Cybersecurity and trust)、數位技能(Digital skills),以及確保數位技術在經濟及社會中被廣泛使用。 前述所說的主要工作計畫,其投入資金為9.095億歐元,重要工作有三。首先,藉由關注氣候和環境保護技術、數據資料、人工智慧、雲端、網路安全、先進數位技能及部署此些技術之最佳方法,並加強歐盟的關鍵數位能力。第二,關注數位公共服務,強調具跨境互操作性(cross-border interoperability)的公部門解決方案(例如歐洲數位身份)。此外,也將透過歐洲數位媒體觀測站(European Digital Media Observatory, EDMO)打擊假訊息,並以InvestEU計畫下的策略數位技術投資平台,重點支持中小及新創企業關注網路安全。 其次,網路安全工作計畫的投入資金為3.75億歐元,由歐洲網路安全能力中心(European Cybersecurity Competence Centre)負責執行,將支援建立國家和跨境安全操作中心的能力,以打造最先進的威脅檢測及網路事件分析生態系統。網路安全工作計畫還將資助產業(特別是中小及新創企業)遵守網路安全法規要求的項目,特別是網路及資訊系統安全指令(Directive on Security of Network and Information Systems, NIS2)或網路韌性法案(Cyber Resilience Act)所要求的內容。 歐盟已在加強數位公共服務、數位技能及網路安全等方面投入許多資源,其中網路安全、資安威脅和打擊假消息等議題因其不受地區限制而更受到注目,未來仍待持續關注此些議題之發展。

日本針對遠距醫療新增「線上診療費」等診療給付項目,提高給付內容與標準

  日本厚生勞動省於2月7日公布2018年度健康保險診療報酬改訂內容,本次改訂項目中,最受矚目者為增訂線上診療之報酬給付。此種活用網路或智慧手機等資通訊網路(ICT)設施所為之診療,在2月7日中央社會保險醫療協議會總會中審議通過,公布個別改訂項目及診療報酬點數。 所謂的「線上診療」係指使用智慧手機之影像電話機能等,使醫師與病患以網路為連結所進行之診療。新設之診療報酬規定,係以具備「使用線上系統等通信技術,得為同步(real time)溝通,為診療與醫學管理。換言之,使用資通訊機器,以影像通話,透過同步影像有溝通可能性係為必要要件。   此一改訂自本年4月1日起適用,醫師診療原則上以面對面診療為原則,在包含有效性、安全性之考量下,且符合一定要件前提而為線上診療時,以「線上診療費」、「線上醫學管理費」等給付項目為給付。   因應此一改訂,厚生勞動省於本年3月30日發布並下達「線上診療適切實施指針」(醫政發0330第46號),本指針係從醫師法第20條禁止無診察診療及個人資料保護法,與線上診療之關係為出發,就到目前為止厚生勞動省發出的通知或事務聯絡等之解釋為正式整理及明確化。項目有:1.關於提供線上診療之事項;2.提供線上診療應具備之體制事項;3.其他線上診療關連事項。各自訂出「最低限度遵守事項」、「建議及獎勵事項」等,最低限度遵守事項之遵守範圍係為了明確不違反醫師法第20條規定所必要。

新加坡以親商政策及稅務優惠等措施提升新創生態系競爭力位居亞洲第一

全球創新研究平台StartupBlink 於2025年5月20日發布《2025全球新創生態系指數》(Global Startup Ecosystem Index 2025),分析與評比全球118個國家及1,473座城市新創生態系之數量、品質與商業環境。其中新加坡自2021年起全球排名不斷攀升,於2022年起佔據亞洲第1之寶座,截至2025年更躍升全球第4,僅位居美國、英國及以色列之後。 新加坡新創生態系之競爭力優勢如下: 1、穩定金融環境:企業與銀行具備充足流動資本與健康償債能力。 2、親商環境制度:新加坡政府以全球創業者計畫(Global Founder Programme, GFP),提供便利簽證、產業人脈引介等多方面支持,吸引經驗豐富之創辦人至新加坡創業。 3、優惠稅務措施:因應全球最低稅負制度,增訂「可退還投資抵減」(Refundable Investment Credit, RIC),針對促進新加坡經濟或提升新興產業成長為重大投資之公司,可扣抵企業應納之稅負。 4、推動產學合作:新加坡學術界除了積極培育高素質人才進行研發外,亦提供專業知識諮詢、產業交流機會,及海外業務拓展之協助,積極推動產學合作,使校園成為創業之溫床。 2025年全球新創生態系面臨兩大衝擊,即AI技術的崛起與迅速更跌,與複雜多變的地緣政治,促使政府須在詭譎的全球局勢中,因應情勢調整國家發展策略,推動新創持續成長。而新加坡政府及學術研究機關均致力推動新創政策,加上充足的基礎設施,吸引大量國際人才與投資,進而促使該國新創生態系之蓬勃發展。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP