全球創新指數顯示創新活動在疫情期間仍持續增長

  今(2021)年10月發布的2021年全球創新指數(GII)報告反映了創新如何塑造和維持世界的運作,最明顯的例子就是COVID-19疫苗的快速發展。此外,數位創新也提供了公部門和私部門應對大流行病浪潮的解決方案,例如接觸者追踪工具、應用程序和診斷方法等。

  實際上在2020年9月,也就是COVID-19被宣佈為大流行病的六個月後,第13屆年度GII就預測了未來一年的研發支出將保持強勁。儘管大流行病造成了毀滅性的人員傷亡和經濟衝擊,但研發支出、智慧財產權申請和創業投資(VC)交易都在大流行病前的高峰上持續增長。

  在2021年的GII報告中提到,在全球研發支出前2,500名的企業中,約有70%已發布了2020年的研發支出數據,從數據中可發現在2020年整體大約有10%的研發支出增長,且大約60%的企業聲稱其研發支出增加。在智慧財產權方面,向世界智慧財產權組織(WIPO)提交的國際專利申請在2020年創下歷史新高。2020年專利申請在醫療技術、製藥和生物技術呈現明顯增長,與前幾年形成鮮明對比,當時數位通信和電腦技術是增長最快的領域。與健康相關領域的專利活動反映了大流行病期間科學活動的持續增長,且鑑於最近醫療保健與加速數位化的研發突飛猛進,可以預期這些領域的專利申請將在未來幾年繼續強勁增長。

相關連結
※ 全球創新指數顯示創新活動在疫情期間仍持續增長, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8748&no=0&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
英國期望透過資料使用與近用法案修正案,強化數位證據資料之可信任性

英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

中鋼開發高效率馬達用鋼片 節省能源

  「京都議定書」要求減少二氧化碳排放量引起各國重視,中國鋼鐵公司已開發高效率馬達用高品級電磁鋼片,可提高馬達輸出效能,節省能源。   中鋼公司六月十四日表示,為因應未來的能源政策趨勢,高效率馬達越來越受到國際間的重視,美國並規定符合效率的馬達才可銷售,我國也實施「三相感應電動機效率管制」措施,規定國內生產及進口的馬達必須是高效率的馬達。國內目前工業用馬達約有六十五萬台,家用馬達約一百萬台;中鋼公司說,依據研究顯示,馬達效率如果提升百分之二,國內每年約可節省用電量約為核能發電廠一部發電主機的發電量。   中鋼公司開發的高效率馬達用電磁鋼片為五十CS四百型與五十CS六百型,約可提升效率兩成,目前已可量產,對環保和節能有很大效益。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

為促進健康資通訊科技之創新,美國嘗試立法重新定義健康軟體

  美國參議院認為健康資通訊科技(Healthy Information Technology)的創新與快速發展已經漸使現行法制不合時宜,美國食品藥物管理局(The US Food and Drug Administration)過度嚴格管制健康資通訊科技產品,甚至以法律強加健康資通訊業者不必要的負擔,恐抹殺新產業的創新能量,因此有必要對相關管制法規予以鬆綁。遂立法提案重新定義健康相關軟體,稱為「防止過度規範以促進照護科技法案」(The Prevent Regulatory Overreach To Enhance Care Technology Act of 2014,以下簡稱PROTECT Act)。   健康資通訊科技是目前創新與發展最快的美國產業。單以健康資通訊科技產業中,與健康相關的手機應用程式(application,APP)之開發,在全球經濟已創造數億美金的產值,在美國一地更提供了將近50萬份的工作機會。然而,在現行法制中食品藥物管理局認為健康相關的手機應用程式等軟體被廣泛應用於醫療行為的資訊蒐集,因此應當被視為醫療行為的一環。依據聯邦食品藥物及化妝品法(TheFederal Food, Drug and Cosmetic Act,FD&C Act)之規定,健康資通訊科技產品被界定為醫療器材(Medical Devices),而健康管理APP、行事曆APP、健康紀錄電子軟體等低風險產品亦包含在內,都必須嚴格遵守醫療器材相關行政管制。在PROTECT Act中將風險較低的健康資通訊科技產品重新定義為臨床軟體(Clinic Software)與健康軟體(Healthy Software)兩種態樣,其共通點在於明白區分出單純提供市場使用,不影響人體或動物醫療的健康資訊蒐集與直接提供實際臨床診斷,如放射線影像或醫療器材軟件的差異,PROTECT Act所定義之臨床軟體與健康軟體即屬於前者,故排除適用FD&C Act中醫療器材之定義範圍,得免除相關行政管制。

TOP