全球創新指數顯示創新活動在疫情期間仍持續增長

  今(2021)年10月發布的2021年全球創新指數(GII)報告反映了創新如何塑造和維持世界的運作,最明顯的例子就是COVID-19疫苗的快速發展。此外,數位創新也提供了公部門和私部門應對大流行病浪潮的解決方案,例如接觸者追踪工具、應用程序和診斷方法等。

  實際上在2020年9月,也就是COVID-19被宣佈為大流行病的六個月後,第13屆年度GII就預測了未來一年的研發支出將保持強勁。儘管大流行病造成了毀滅性的人員傷亡和經濟衝擊,但研發支出、智慧財產權申請和創業投資(VC)交易都在大流行病前的高峰上持續增長。

  在2021年的GII報告中提到,在全球研發支出前2,500名的企業中,約有70%已發布了2020年的研發支出數據,從數據中可發現在2020年整體大約有10%的研發支出增長,且大約60%的企業聲稱其研發支出增加。在智慧財產權方面,向世界智慧財產權組織(WIPO)提交的國際專利申請在2020年創下歷史新高。2020年專利申請在醫療技術、製藥和生物技術呈現明顯增長,與前幾年形成鮮明對比,當時數位通信和電腦技術是增長最快的領域。與健康相關領域的專利活動反映了大流行病期間科學活動的持續增長,且鑑於最近醫療保健與加速數位化的研發突飛猛進,可以預期這些領域的專利申請將在未來幾年繼續強勁增長。

相關連結
※ 全球創新指數顯示創新活動在疫情期間仍持續增長, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8748&no=0&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
Sandoz藥廠和Momenta藥廠將支付1.2億美金和解反托拉斯訴訟

  諾華(Novartis)旗下學名藥廠山德士(Sandoz)和美國學名藥廠Momenta,同意支付1.2億美金,使涉及其暢銷救命藥Enoxaparin之反托拉斯集體訴訟達成和解。本案原告為非營利醫院Nashville綜合醫院和紐約州公務員工會醫療計畫組織DC 37,於2014年美國田納西中區聯邦地方法院起訴。根據訴訟文件提到,Enoxaparin原是訴外人賽諾菲(Sanofi-Aventis)以Lovenox為品牌名販售的抗凝血劑,用於預防和治療深部靜脈血栓、肺栓塞及急性冠心症等症狀,2010年Momenta證明其學名藥Enoxaparin和Lovenox具相同療效,申請簡易新藥上市(Abbreviated New Drug Application,ANDA)獲准。   原告指稱2008年Momenta欺瞞美國藥典委員會(United States Pharmacopeial Convention,USP),使其開發之Enoxaparin檢測方法,成為美國食品藥品監督管理局(U.S. Food and Drug Administration,FDA)指定的檢測方法之一,但在此過程中未向藥典委員會揭露自己正為該檢測方法申請專利。隔年Momenta之檢測方法取得專利(No.7,575,886),因該檢測方法無法迴避,故其它欲生產Enoxaparin的學名藥廠皆可能侵害該專利,而難以進入市場。又Momenta和山德士早在2003年就簽有合作協議,Momenta將該專利授權給山德士,共同創造一個壟斷的學名藥市場,以抬高售價賺取暴利。   未來和解金將用於賠償醫院、保險公司、為員工支付醫療費用的公司,及田納西州其它29區受山德士和Momenta反競爭行為影響的人們。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢

加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。

IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。   近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。   傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。   此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。   其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP