德國聯邦專利法院在2021年11月中旬對美國發明人Stephen Thaler(後稱Dr. Thaler)所開發之AI系統(DABUS)是否能成為專利發明人作出判決,儘管AI在研發過程中協助發現問題並解決問題,法院仍認為專利發明人必須為自然人,但特別補充說明這項發明確實有得到AI的幫助。
Dr. Thaler及其法律團隊將該發明在各國進行專利申請。盤點各國智財局或法院之考量:美國專利商標局(USPTO)強調發明人應以自然人為由排除這類案件;儘管英國智財局(UKIPO)認同DABUS富有創新,卻否認其為合法發明人,不過認為有必要檢視AI技術帶給現存專利制度的挑戰,並已啟動針對AI發明之法律改革計畫;至於歐洲專利局(EPO)以不符合自然人或實體等資格而核駁這類案件,然而上訴結果將於12月下旬作出判決。
惟澳洲聯邦法院在7月底逆轉做出法律並未禁止以AI為發明人而提出專利申請之判決,這也是繼南非允許AI作為發明人而取得專利權之後的第二個案例。
根據各國智財局、世界智慧財產權組織(WIPO)與法院多將智慧財產係來自於心智創作,卻未定義該心智創作是來自於人類或AI,可預見非人類主體將可被視為發明人並授予智慧財產權。此外,現行智財法律也有重新檢視與定義之必要性,包括釐清AI演算法與AI開發者之角色以重新定義發明人資格或所有權人等議題。
德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。 德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。 有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。 對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。
德國首例因Twitter超連結的裁定出爐根據德國法蘭克福地方法院日前於4月20日的一則假處分裁定(Beschluss vom 20.04.2010, Az. 3-08 O 46/10),禁止被告以超連結方式,讓點取該鏈結的人,得以連結到刊登有損害原告商業信譽的文章頁面。 本件事實起源於一名匿名的網友在不同的網路論壇中,發表刊登有侵害原告商業信譽的言論,而曾經與原告有商業上往來的被告,利用自己Twiiter帳戶,發表超連結,並在鏈結網址下加上「十分有趣」的文字,讓看到該訊息的朋友,都可以點選鏈結連接到這些不利於原告商業信譽的文章、言論。原告因而向法院申請假處分裁定,禁止被告以超連結方式繼續為有損原告商業信譽的行為。 法蘭克福地方法院的這起裁定,被視為是德國國內第一起法院對Twitter等社群網站的警告,德國輿論各界也普遍認為,法院透過裁定對外明白宣示社群網站使用者往往誤認網路社群空間為「半私人場域(須加入好友才得以分享資訊、留言等)」,在自己的帳戶上發表心得、感想、分享文章等行為,還是有構成侵權責任的可能性。 該裁定出爐後,德國各界則開始討論被告設定超連結的行為是否構成網路侵權責任,持贊成意見者認為,即使該違法言論非被告本人所發表,被告設定超連結的行為,也讓自己與該違法言論「合而為一(zueigen gemacht)」,也就是,讓外界以為該違法言論就是被告本人所撰寫刊登;根據德國電信服務法(Telemediengesetz, TMG)第7條規定,內容提供者須為「自己」的言論負擔法律責任。 反對者則拿其他超連結的案例舉出,法院認定被告是否構成網路內容提供者的侵權責任,通常會檢視被告對於該違法言論的內容是否知悉、被告是否違背其檢查監督義務(Überprüfungspflicht),例如被告須為一定行為藉以與原撰文者劃清界線等。但因各該檢驗標準都係由法院依據個案加以認定,讓人無所適從,產生網路侵權行為的判斷標準過於浮動之疑慮,德國國會也因此著手進行電信服務法的修法。
美國白宮公布巨量資料追蹤報告與政策建議 經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。