紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。
於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括:
一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。
二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。
如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
美國專利商標局在2019年1月4日公布專利適格性審查指南(2019 Revised Patent Subject Matter Eligibility Guidance, 下稱新審查指南)。新審查指南對於如何使用美國最高法院Alice/Mayo測試法第一步驟(步驟2A),判斷專利請求項是否指向司法排除事項(judicial exception),做了兩個主要修改: (1)明確屬於「抽象概念」的排除事項包括:數學概念、組織人類活動的特定方法與心智活動。新審查指南並舉例說明數學概念包括數學關係、公式或方程式;組織人類活動的方法包括基本經濟原則或實踐、商業或法律互動關係,或管理個人行為或人與人之間的關係或互動;心智活動包括人類在心中執行的思想,例如觀察、評估、判斷或意見。根據新審查指南,審查委員不再需要將專利請求項與過去的判例比較來判斷專利標的是否屬於抽象概念。 (2)將判斷請求項是否指向司法排除事項的第一步驟(步驟2A)改為兩階段測試。首先,審查委員評估請求項是否屬於司法排除事項(自然法則、自然現象、抽象概念),若是,要進一步評估請求項是否有其他要素(element)可將該司法排除事項結合到「實際應用」中。若可,則不屬於司法排除事項。若無法將其結合到「實際應用」中,才須進行Alice/Mayo測試法第二步驟(步驟2B)的審查。新審查指南也對其他要素結合司法排除事項的「實際應用」提供例示,包括:反映電腦功能或其他技術的改進、應用該司法排除事項使特定疾病或醫療狀況的治療或預防產生效果、將該司法排除事項用在特定機器或製品中且在請求項中限定使用的機器或製品、使特定物品轉換到另一種狀態或成為另一種物品。 此修改將增加審查委員以抽象概念核駁專利請求項的舉證負擔,審查委員必須闡明為何發明不構成步驟2A中的「實際應用」,還要在步驟2B證明為何該元素屬於已熟知、常規或習知的行為。因此,新審查指南將使審查委員要以抽象概念核駁發明,特別是軟體相關發明的難度變高。 新審查指南已於2019年1月7日生效並徵求公眾意見,後續還可能會發生變化。此外,由於該指南不具有法律約束力,因此法院將如何根據新審查指南評估核准專利之有效性仍有待觀察。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定Uber違反《Data Protection Act 1998》資料保護法英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定知名共享公司Uber未能在網路攻擊期間保護客戶的個人資料,故處以罰款385,000英鎊。 ICO調查發現Uber的諸多過失,包含系統存有一系列原可避免的數據安全漏洞,使得攻擊者可透過Uber美國母公司旗下所營運的雲端儲存系統,下載大約270萬筆英國客戶個人資料,例如全名、電子郵件及電話號碼等。該事件亦影響了Uber在英國8萬多名司機的相關營運紀錄,如旅程詳情及支付金額。然而,受影響的客戶和司機竟達一年多未被告知此個資外洩事故。相反的,Uber反而向攻擊者妥協並支付了10萬美元,以銷毀被盜取的數據。 ICO認為,這不僅為Uber資料安全之問題,且當時未採取任何措施通知可能受影響的人,或對其提供任何協助,已完全忽視受害客戶和司機之權益。而對攻擊者支付贖金後即保持沉默,亦非對於網路攻擊之適當反應,Uber未完善的數據保護措施,以及隨後的決策與行為,反將可能會加劇受害者權益的受損。 因此,ICO認為該事件已嚴重違反了英國1988年資料保護法(Data Protection Act 1998, DPA)第7條的原則,有可能使受影響的客戶和司機面臨更高的詐欺風險,故從嚴判處Uber高達385,000英鎊罰款。
基改小麥事件爆發 基改標示議題再上火線基因改造食品的安全性,向來引起全球關注,各界爭議不休。美國農業部在上(5)月29日公開表示,在奧勒岡州(Oregon)的私人農場中發現基因改造小麥,這是否屬於單一個案,還是意味著基改防線已有所瓦解,對於美國基改管理體系具有重大意義。以目前而言,美國尚未核准任何基因改造小麥。 美國是全球最大的小麥供應國,每年有4000萬噸小麥輸入亞洲;其中,日本更是美國最重要的海外市場。在本案爆發之後,日本於第一時間暫停來自美國西北的小麥進口至美國境內,這股緊張氣氛預計將快速漫延至其他亞洲國家。 事實上,在這事件同時,於綠色和平(green peace)及其他NGO團體串聯下,全球200萬民眾走上街頭,抗議美國孟山都(Monsanto)及其研發的基因改造食品,包括美國、加拿大、阿根廷等,估計共有52國、436個城市響應,一齊表達對於基因改造食品的不安感。在基因改造食品的長期爭議下,美國有若干州考慮採取立法管制,特別是要求基因改造作物或產品必須要標示清楚,以保護消費者的權益。最新的進展是,在本(6)月4日,康乃迪克州(Connecticut)議會以134比3,通過基因改革食物法案,要求各項食物必須明確標示是否含有基因改造成分。在這之後,緬因(Maine)州也立即跟進,以141比4通過類似的基改標示法案。而案件爆發地–奧勒岡州,則還沒有進一步消息。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。