紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。
於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括:
一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。
二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。
如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
自2016年Mirai殭屍網路攻擊事件後,物聯網設備安全成為美國國會主要關注對象之一,參議院於2017年曾提出「2017年物聯網網路安全促進法」(Internet of Things Cybersecurity Improvement Act of 2017)草案,防止美國政府部門購買有明顯網路安全性漏洞之聯網設備,並制定具體規範以保護聯網設施之網路安全,然而該法案最終並未交付委員會審議。 2019年4月,美國參議員Mark Warner提出「2019年物聯網網路安全促進法」草案(Internet of Things Cybersecurity Improvement Act of 2019),再度嘗試建立物聯網網路安全監管框架。本法將授權主管機關建立物聯網設備所應具備之安全性條件清單,而該清單將由美國國家標準與技術研究院(National Institute of Standards and Technology)擬定,並由管理與預算局(Office of Management and Budget, OMB)負責督導後續各聯邦機關導入由美國國家標準與技術研究院所制定之網路安全指引。本法草案相較於2017年的版本而言雖較具彈性,惟網路安全專家指出,清單之擬定與執行管理分別交由不同單位主責,未來可能導致規範無法被有效執行,且聯邦各層級單位所需具備之資安防護等級不盡相同,如何制宜亦係未來焦點。
日本政府發布2024年版「實現數位社會重點計畫」.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 日本於2024年6月21日內閣決議更新「實現數位社會重點計畫」(デジタル社会の実現に向けた重点計画),作為日本最新數位與資料治理革新之上位政策,以達成實現Society5.0以及整合並協調各機關數位政策之目標,力求克服日本近年面臨人口減少、勞動力不足、產業競爭力下降、災害風險等之課題。 「實現數位社會重點計畫」自2021年發布第一版起,即以六項願景整合相關政策,分別為: 1. 數位化實現成長:數位轉型推動整體社會的生產力與競爭力; 2. 重要領域數位化:資料串連推動醫療、教育、防災、兒童等領域的安全發展; 3. 數位化實現區域振興:數位工具活化各區域特色; 4. 沒有人落後的數位社會:使所有人都可以體驗數位化服務; 5. 開發與保護數位人力:建立持續培養數位人力的社會; 6. 推動國際資料流通:實現資料可信任的跨國自由流通。 2024年「實現數位社會重點計畫」以六項願景分述各機關計劃推動的320個相關政策,如有醫院急救時共享醫療資訊、電子母子健康手冊、兒童資料串接、減少長者數位障礙、女性數位人才培育,以及推動資料可信任自由流通(Data Free Flow with Trust)等。 此外,本次更新之計畫新增「業務、系統、制度三位一體」作為推動架構。其中業務指結合資料與數位應用的行政服務;系統則是指適合於業務運作的軟、硬體;制度則指透過包含資料標準、指引或法令等方式形成之規範。日本藉此推動架構評估資料與數位之政策從起草、規劃到執行等階段中業務、系統與制度之間的協調性,為政策的制定者、使用者提供便利與高品質的數位體驗。 由2024年實現數位社會重點計畫的更新可知,日本強調在數位轉型階段中社會整體革新的企圖,加強政策在業務、系統、制度三個層面的一致性,以在邁向數位社會的同時克服社會轉型的挑戰。
美國參議院通過《2021美國創新暨競爭法案》 眾議院通過《美國國家科學基金會未來法案》美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。 該法案分為六大部分: 《晶片製造法與5G等無線技術應用》(CHIPS Act and ORAN 5G Emergency Appropriations) 《無盡邊疆法》(Endless Frontier Act) 《2021戰略競爭法》(Strategic Competition Act of 2021) 《國土安全與政府事務委員會相關條款》(Homeland Security and Government Affairs Committee Provisions) 《2021回應中國挑戰法》(Meeting the China Challenge Act of 2021) 其他(如:教育與醫學研究競爭力與安全、司法委員會)。 其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。 同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。 參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。